"""Tool execution node for LangGraph workflows. This module provides prebuilt functionality for executing tools in LangGraph. Tools are functions that models can call to interact with external systems, APIs, databases, or perform computations. The module implements design patterns for: - Parallel execution of multiple tool calls for efficiency - Robust error handling with customizable error messages - State injection for tools that need access to graph state - Store injection for tools that need persistent storage - Command-based state updates for advanced control flow Key Components: - `ToolNode`: Main class for executing tools in LangGraph workflows - `InjectedState`: Annotation for injecting graph state into tools - `InjectedStore`: Annotation for injecting persistent store into tools - `ToolRuntime`: Runtime information for tools, bundling together `state`, `context`, `config`, `stream_writer`, `tool_call_id`, and `store` - `tools_condition`: Utility function for conditional routing based on tool calls Typical Usage: ```python from langchain_core.tools import tool from langchain.tools import ToolNode @tool def my_tool(x: int) -> str: return f"Result: {x}" tool_node = ToolNode([my_tool]) ``` """ from __future__ import annotations import asyncio import inspect import json from collections.abc import Awaitable, Callable from copy import copy, deepcopy from dataclasses import dataclass, replace from types import UnionType from typing import ( TYPE_CHECKING, Annotated, Any, Generic, Literal, TypedDict, Union, cast, get_args, get_origin, get_type_hints, ) from langchain_core.messages import ( AIMessage, AnyMessage, RemoveMessage, ToolCall, ToolMessage, convert_to_messages, ) from langchain_core.runnables.config import ( RunnableConfig, get_config_list, get_executor_for_config, ) from langchain_core.tools import BaseTool, InjectedToolArg from langchain_core.tools import tool as create_tool from langchain_core.tools.base import ( TOOL_MESSAGE_BLOCK_TYPES, ToolException, _DirectlyInjectedToolArg, get_all_basemodel_annotations, ) from langgraph._internal._runnable import RunnableCallable from langgraph.errors import GraphBubbleUp from langgraph.graph.message import REMOVE_ALL_MESSAGES from langgraph.store.base import BaseStore # noqa: TC002 from langgraph.types import Command, Send, StreamWriter from pydantic import BaseModel, ValidationError from typing_extensions import TypeVar, Unpack if TYPE_CHECKING: from collections.abc import Sequence from langgraph.runtime import Runtime from pydantic_core import ErrorDetails # right now we use a dict as the default, can change this to AgentState, but depends # on if this lives in LangChain or LangGraph... ideally would have some typed # messages key StateT = TypeVar("StateT", default=dict) ContextT = TypeVar("ContextT", default=None) INVALID_TOOL_NAME_ERROR_TEMPLATE = ( "Error: {requested_tool} is not a valid tool, try one of [{available_tools}]." ) TOOL_CALL_ERROR_TEMPLATE = "Error: {error}\n Please fix your mistakes." TOOL_EXECUTION_ERROR_TEMPLATE = ( "Error executing tool '{tool_name}' with kwargs {tool_kwargs} with error:\n" " {error}\n" " Please fix the error and try again." ) TOOL_INVOCATION_ERROR_TEMPLATE = ( "Error invoking tool '{tool_name}' with kwargs {tool_kwargs} with error:\n" " {error}\n" " Please fix the error and try again." ) class _ToolCallRequestOverrides(TypedDict, total=False): """Possible overrides for ToolCallRequest.override() method.""" tool_call: ToolCall @dataclass class ToolCallRequest: """Tool execution request passed to tool call interceptors. Attributes: tool_call: Tool call dict with name, args, and id from model output. tool: BaseTool instance to be invoked, or None if tool is not registered with the `ToolNode`. When tool is `None`, interceptors can handle the request without validation. If the interceptor calls `execute()`, validation will occur and raise an error for unregistered tools. state: Agent state (`dict`, `list`, or `BaseModel`). runtime: LangGraph runtime context (optional, `None` if outside graph). """ tool_call: ToolCall tool: BaseTool | None state: Any runtime: ToolRuntime def __setattr__(self, name: str, value: Any) -> None: """Raise deprecation warning when setting attributes directly. Direct attribute assignment is deprecated. Use the `override()` method instead. """ import warnings # Allow setting attributes during initialization if not hasattr(self, "__dataclass_fields__") or not hasattr(self, name): object.__setattr__(self, name, value) else: warnings.warn( f"Setting attribute '{name}' on ToolCallRequest is deprecated. " "Use the override() method instead to create a new instance with modified values.", DeprecationWarning, stacklevel=2, ) object.__setattr__(self, name, value) def override( self, **overrides: Unpack[_ToolCallRequestOverrides] ) -> ToolCallRequest: """Replace the request with a new request with the given overrides. Returns a new `ToolCallRequest` instance with the specified attributes replaced. This follows an immutable pattern, leaving the original request unchanged. Args: **overrides: Keyword arguments for attributes to override. Supported keys: - tool_call: Tool call dict with name, args, and id Returns: New ToolCallRequest instance with specified overrides applied. Examples: ```python # Modify tool call arguments without mutating original modified_call = {**request.tool_call, "args": {"value": 10}} new_request = request.override(tool_call=modified_call) # Override multiple attributes new_request = request.override(tool_call=modified_call, state=new_state) ``` """ return replace(self, **overrides) ToolCallWrapper = Callable[ [ToolCallRequest, Callable[[ToolCallRequest], ToolMessage | Command]], ToolMessage | Command, ] """Wrapper for tool call execution with multi-call support. Wrapper receives: request: ToolCallRequest with tool_call, tool, state, and runtime. execute: Callable to execute the tool (CAN BE CALLED MULTIPLE TIMES). Returns: ToolMessage or Command (the final result). The execute callable can be invoked multiple times for retry logic, with potentially modified requests each time. Each call to execute is independent and stateless. !!! note When implementing middleware for `create_agent`, use `AgentMiddleware.wrap_tool_call` which provides properly typed state parameter for better type safety. Examples: Passthrough (execute once): def handler(request, execute): return execute(request) Modify request before execution: ```python def handler(request, execute): modified_call = {**request.tool_call, "args": {**request.tool_call["args"], "value": request.tool_call["args"]["value"] * 2}} modified_request = request.override(tool_call=modified_call) return execute(modified_request) ``` Retry on error (execute multiple times): ```python def handler(request, execute): for attempt in range(3): try: result = execute(request) if is_valid(result): return result except Exception: if attempt == 2: raise return result ``` Conditional retry based on response: ```python def handler(request, execute): for attempt in range(3): result = execute(request) if isinstance(result, ToolMessage) and result.status != "error": return result if attempt < 2: continue return result ``` Cache/short-circuit without calling execute: ```python def handler(request, execute): if cached := get_cache(request): return ToolMessage(content=cached, tool_call_id=request.tool_call["id"]) result = execute(request) save_cache(request, result) return result ``` """ AsyncToolCallWrapper = Callable[ [ToolCallRequest, Callable[[ToolCallRequest], Awaitable[ToolMessage | Command]]], Awaitable[ToolMessage | Command], ] """Async wrapper for tool call execution with multi-call support.""" class ToolCallWithContext(TypedDict): """ToolCall with additional context for graph state. This is an internal data structure meant to help the `ToolNode` accept tool calls with additional context (e.g. state) when dispatched using the Send API. The Send API is used in create_agent to distribute tool calls in parallel and support human-in-the-loop workflows where graph execution may be paused for an indefinite time. """ tool_call: ToolCall __type: Literal["tool_call_with_context"] """Type to parameterize the payload. Using "__" as a prefix to be defensive against potential name collisions with regular user state. """ state: Any """The state is provided as additional context.""" def msg_content_output(output: Any) -> str | list[dict]: """Convert tool output to `ToolMessage` content format. Handles `str`, `list[dict]` (content blocks), and arbitrary objects by attempting JSON serialization with fallback to str(). Args: output: Tool execution output of any type. Returns: String or list of content blocks suitable for `ToolMessage.content`. """ if isinstance(output, str) or ( isinstance(output, list) and all( isinstance(x, dict) and x.get("type") in TOOL_MESSAGE_BLOCK_TYPES for x in output ) ): return output # Technically a list of strings is also valid message content, but it's # not currently well tested that all chat models support this. # And for backwards compatibility we want to make sure we don't break # any existing ToolNode usage. try: return json.dumps(output, ensure_ascii=False) except Exception: # noqa: BLE001 return str(output) class ToolInvocationError(ToolException): """An error occurred while invoking a tool due to invalid arguments. This exception is only raised when invoking a tool using the `ToolNode`! """ def __init__( self, tool_name: str, source: ValidationError, tool_kwargs: dict[str, Any], filtered_errors: list[ErrorDetails] | None = None, ) -> None: """Initialize the ToolInvocationError. Args: tool_name: The name of the tool that failed. source: The exception that occurred. tool_kwargs: The keyword arguments that were passed to the tool. filtered_errors: Optional list of filtered validation errors excluding injected arguments. """ # Format error display based on filtered errors if provided if filtered_errors is not None: # Manually format the filtered errors without URLs or fancy formatting error_str_parts = [] for error in filtered_errors: loc_str = ".".join(str(loc) for loc in error.get("loc", ())) msg = error.get("msg", "Unknown error") error_str_parts.append(f"{loc_str}: {msg}") error_display_str = "\n".join(error_str_parts) else: error_display_str = str(source) self.message = TOOL_INVOCATION_ERROR_TEMPLATE.format( tool_name=tool_name, tool_kwargs=tool_kwargs, error=error_display_str ) self.tool_name = tool_name self.tool_kwargs = tool_kwargs self.source = source self.filtered_errors = filtered_errors super().__init__(self.message) def _default_handle_tool_errors(e: Exception) -> str: """Default error handler for tool errors. If the tool is a tool invocation error, return its message. Otherwise, raise the error. """ if isinstance(e, ToolInvocationError): return e.message raise e def _handle_tool_error( e: Exception, *, flag: bool | str | Callable[..., str] | type[Exception] | tuple[type[Exception], ...], ) -> str: """Generate error message content based on exception handling configuration. This function centralizes error message generation logic, supporting different error handling strategies configured via the `ToolNode`'s `handle_tool_errors` parameter. Args: e: The exception that occurred during tool execution. flag: Configuration for how to handle the error. Can be: - bool: If `True`, use default error template - str: Use this string as the error message - Callable: Call this function with the exception to get error message - tuple: Not used in this context (handled by caller) Returns: A string containing the error message to include in the `ToolMessage`. Raises: ValueError: If flag is not one of the supported types. !!! note The tuple case is handled by the caller through exception type checking, not by this function directly. """ if isinstance(flag, (bool, tuple)) or ( isinstance(flag, type) and issubclass(flag, Exception) ): content = TOOL_CALL_ERROR_TEMPLATE.format(error=repr(e)) elif isinstance(flag, str): content = flag elif callable(flag): content = flag(e) # type: ignore [assignment, call-arg] else: msg = ( f"Got unexpected type of `handle_tool_error`. Expected bool, str " f"or callable. Received: {flag}" ) raise ValueError(msg) return content def _infer_handled_types(handler: Callable[..., str]) -> tuple[type[Exception], ...]: """Infer exception types handled by a custom error handler function. This function analyzes the type annotations of a custom error handler to determine which exception types it's designed to handle. This enables type-safe error handling where only specific exceptions are caught and processed by the handler. Args: handler: A callable that takes an exception and returns an error message string. The first parameter (after self/cls if present) should be type-annotated with the exception type(s) to handle. Returns: A tuple of exception types that the handler can process. Returns (Exception,) if no specific type information is available for backward compatibility. Raises: ValueError: If the handler's annotation contains non-Exception types or if Union types contain non-Exception types. !!! note This function supports both single exception types and Union types for handlers that need to handle multiple exception types differently. """ sig = inspect.signature(handler) params = list(sig.parameters.values()) if params: # If it's a method, the first argument is typically 'self' or 'cls' if params[0].name in ["self", "cls"] and len(params) == 2: first_param = params[1] else: first_param = params[0] type_hints = get_type_hints(handler) if first_param.name in type_hints: origin = get_origin(first_param.annotation) if origin in [Union, UnionType]: args = get_args(first_param.annotation) if all(issubclass(arg, Exception) for arg in args): return tuple(args) msg = ( "All types in the error handler error annotation must be " "Exception types. For example, " "`def custom_handler(e: Union[ValueError, TypeError])`. " f"Got '{first_param.annotation}' instead." ) raise ValueError(msg) exception_type = type_hints[first_param.name] if Exception in exception_type.__mro__: return (exception_type,) msg = ( f"Arbitrary types are not supported in the error handler " f"signature. Please annotate the error with either a " f"specific Exception type or a union of Exception types. " "For example, `def custom_handler(e: ValueError)` or " "`def custom_handler(e: Union[ValueError, TypeError])`. " f"Got '{exception_type}' instead." ) raise ValueError(msg) # If no type information is available, return (Exception,) # for backwards compatibility. return (Exception,) def _filter_validation_errors( validation_error: ValidationError, injected_args: _InjectedArgs | None, ) -> list[ErrorDetails]: """Filter validation errors to only include LLM-controlled arguments. When a tool invocation fails validation, only errors for arguments that the LLM controls should be included in error messages. This ensures the LLM receives focused, actionable feedback about parameters it can actually fix. System-injected arguments (state, store, runtime) are filtered out since the LLM has no control over them. This function also removes injected argument values from the `input` field in error details, ensuring that only LLM-provided arguments appear in error messages. Args: validation_error: The Pydantic ValidationError raised during tool invocation. injected_args: The _InjectedArgs structure containing all injected arguments, or None if there are no injected arguments. Returns: List of ErrorDetails containing only errors for LLM-controlled arguments, with system-injected argument values removed from the input field. """ # Collect all injected argument names injected_arg_names: set[str] = set() if injected_args: if injected_args.state: injected_arg_names.update(injected_args.state.keys()) if injected_args.store: injected_arg_names.add(injected_args.store) if injected_args.runtime: injected_arg_names.add(injected_args.runtime) filtered_errors: list[ErrorDetails] = [] for error in validation_error.errors(): # Check if error location contains any injected argument # error['loc'] is a tuple like ('field_name',) or ('field_name', 'nested_field') if error["loc"] and error["loc"][0] not in injected_arg_names: # Create a copy of the error dict to avoid mutating the original error_copy: dict[str, Any] = {**error} # Remove injected arguments from input_value if it's a dict if isinstance(error_copy.get("input"), dict): input_dict = error_copy["input"] input_copy = { k: v for k, v in input_dict.items() if k not in injected_arg_names } error_copy["input"] = input_copy # Cast is safe because ErrorDetails is a TypedDict compatible with this structure filtered_errors.append(error_copy) # type: ignore[arg-type] return filtered_errors @dataclass class _InjectedArgs: """Internal structure for tracking injected arguments for a tool. This data structure is built once during ToolNode initialization by analyzing the tool's signature and args schema, then reused during execution for efficient injection without repeated reflection. The structure maps from tool parameter names to their injection sources, enabling the ToolNode to know exactly which arguments need to be injected and where to get their values from. Attributes: state: Mapping from tool parameter names to state field names for injection. Keys are tool parameter names, values are either: - str: Name of the state field to extract and inject - None: Inject the entire state object Empty dict if no state injection is needed. store: Name of the tool parameter where the store should be injected, or None if no store injection is needed. runtime: Name of the tool parameter where the runtime should be injected, or None if no runtime injection is needed. Example: For a tool with signature: ```python def my_tool( x: int, messages: Annotated[list, InjectedState("messages")], full_state: Annotated[dict, InjectedState()], store: Annotated[BaseStore, InjectedStore()], runtime: ToolRuntime, ) -> str: ... ``` The resulting `_InjectedArgs` would be: ```python _InjectedArgs( state={ "messages": "messages", # Extract state["messages"] "full_state": None, # Inject entire state }, store="store", # Inject into "store" parameter runtime="runtime", # Inject into "runtime" parameter ) ``` """ state: dict[str, str | None] store: str | None runtime: str | None class ToolNode(RunnableCallable): """A node for executing tools in LangGraph workflows. Handles tool execution patterns including function calls, state injection, persistent storage, and control flow. Manages parallel execution, error handling. Input Formats: 1. Graph state with `messages` key that has a list of messages: - Common representation for agentic workflows - Supports custom messages key via `messages_key` parameter 2. **Message List**: `[AIMessage(..., tool_calls=[...])]` - List of messages with tool calls in the last AIMessage 3. **Direct Tool Calls**: `[{"name": "tool", "args": {...}, "id": "1", "type": "tool_call"}]` - Bypasses message parsing for direct tool execution - For programmatic tool invocation and testing Output Formats: Output format depends on input type and tool behavior: **For Regular tools**: - Dict input → `{"messages": [ToolMessage(...)]}` - List input → `[ToolMessage(...)]` **For Command tools**: - Returns `[Command(...)]` or mixed list with regular tool outputs - `Command` can update state, trigger navigation, or send messages Args: tools: A sequence of tools that can be invoked by this node. Supports: - **BaseTool instances**: Tools with schemas and metadata - **Plain functions**: Automatically converted to tools with inferred schemas name: The name identifier for this node in the graph. Used for debugging and visualization. tags: Optional metadata tags to associate with the node for filtering and organization. handle_tool_errors: Configuration for error handling during tool execution. Supports multiple strategies: - `True`: Catch all errors and return a `ToolMessage` with the default error template containing the exception details. - `str`: Catch all errors and return a `ToolMessage` with this custom error message string. - `type[Exception]`: Only catch exceptions with the specified type and return the default error message for it. - `tuple[type[Exception], ...]`: Only catch exceptions with the specified types and return default error messages for them. - `Callable[..., str]`: Catch exceptions matching the callable's signature and return the string result of calling it with the exception. - `False`: Disable error handling entirely, allowing exceptions to propagate. Defaults to a callable that: - Catches tool invocation errors (due to invalid arguments provided by the model) and returns a descriptive error message - Ignores tool execution errors (they will be re-raised) messages_key: The key in the state dictionary that contains the message list. This same key will be used for the output `ToolMessage` objects. Allows custom state schemas with different message field names. Examples: Basic usage: ```python from langchain.tools import ToolNode from langchain_core.tools import tool @tool def calculator(a: int, b: int) -> int: \"\"\"Add two numbers.\"\"\" return a + b tool_node = ToolNode([calculator]) ``` State injection: ```python from typing_extensions import Annotated from langchain.tools import InjectedState @tool def context_tool(query: str, state: Annotated[dict, InjectedState]) -> str: \"\"\"Some tool that uses state.\"\"\" return f"Query: {query}, Messages: {len(state['messages'])}" tool_node = ToolNode([context_tool]) ``` Error handling: ```python def handle_errors(e: ValueError) -> str: return "Invalid input provided" tool_node = ToolNode([my_tool], handle_tool_errors=handle_errors) ``` """ # noqa: E501 name: str = "tools" def __init__( self, tools: Sequence[BaseTool | Callable], *, name: str = "tools", tags: list[str] | None = None, handle_tool_errors: bool | str | Callable[..., str] | type[Exception] | tuple[type[Exception], ...] = _default_handle_tool_errors, messages_key: str = "messages", wrap_tool_call: ToolCallWrapper | None = None, awrap_tool_call: AsyncToolCallWrapper | None = None, ) -> None: """Initialize `ToolNode` with tools and configuration. Args: tools: Sequence of tools to make available for execution. name: Node name for graph identification. tags: Optional metadata tags. handle_tool_errors: Error handling configuration. messages_key: State key containing messages. wrap_tool_call: Sync wrapper function to intercept tool execution. Receives ToolCallRequest and execute callable, returns ToolMessage or Command. Enables retries, caching, request modification, and control flow. awrap_tool_call: Async wrapper function to intercept tool execution. If not provided, falls back to wrap_tool_call for async execution. """ super().__init__(self._func, self._afunc, name=name, tags=tags, trace=False) self._tools_by_name: dict[str, BaseTool] = {} self._injected_args: dict[str, _InjectedArgs] = {} self._handle_tool_errors = handle_tool_errors self._messages_key = messages_key self._wrap_tool_call = wrap_tool_call self._awrap_tool_call = awrap_tool_call for tool in tools: if not isinstance(tool, BaseTool): tool_ = create_tool(cast("type[BaseTool]", tool)) else: tool_ = tool self._tools_by_name[tool_.name] = tool_ # Build injected args mapping once during initialization in a single pass self._injected_args[tool_.name] = _get_all_injected_args(tool_) @property def tools_by_name(self) -> dict[str, BaseTool]: """Mapping from tool name to BaseTool instance.""" return self._tools_by_name def _func( self, input: list[AnyMessage] | dict[str, Any] | BaseModel, config: RunnableConfig, runtime: Runtime, ) -> Any: tool_calls, input_type = self._parse_input(input) config_list = get_config_list(config, len(tool_calls)) # Construct ToolRuntime instances at the top level for each tool call tool_runtimes = [] for call, cfg in zip(tool_calls, config_list, strict=False): state = self._extract_state(input) tool_runtime = ToolRuntime( state=state, tool_call_id=call["id"], config=cfg, context=runtime.context, store=runtime.store, stream_writer=runtime.stream_writer, ) tool_runtimes.append(tool_runtime) # Pass original tool calls without injection input_types = [input_type] * len(tool_calls) with get_executor_for_config(config) as executor: outputs = list( executor.map(self._run_one, tool_calls, input_types, tool_runtimes) ) return self._combine_tool_outputs(outputs, input_type) async def _afunc( self, input: list[AnyMessage] | dict[str, Any] | BaseModel, config: RunnableConfig, runtime: Runtime, ) -> Any: tool_calls, input_type = self._parse_input(input) config_list = get_config_list(config, len(tool_calls)) # Construct ToolRuntime instances at the top level for each tool call tool_runtimes = [] for call, cfg in zip(tool_calls, config_list, strict=False): state = self._extract_state(input) tool_runtime = ToolRuntime( state=state, tool_call_id=call["id"], config=cfg, context=runtime.context, store=runtime.store, stream_writer=runtime.stream_writer, ) tool_runtimes.append(tool_runtime) # Pass original tool calls without injection coros = [] for call, tool_runtime in zip(tool_calls, tool_runtimes, strict=False): coros.append(self._arun_one(call, input_type, tool_runtime)) # type: ignore[arg-type] outputs = await asyncio.gather(*coros) return self._combine_tool_outputs(outputs, input_type) def _combine_tool_outputs( self, outputs: list[ToolMessage | Command], input_type: Literal["list", "dict", "tool_calls"], ) -> list[Command | list[ToolMessage] | dict[str, list[ToolMessage]]]: # preserve existing behavior for non-command tool outputs for backwards # compatibility if not any(isinstance(output, Command) for output in outputs): # TypedDict, pydantic, dataclass, etc. should all be able to load from dict return outputs if input_type == "list" else {self._messages_key: outputs} # LangGraph will automatically handle list of Command and non-command node # updates combined_outputs: list[ Command | list[ToolMessage] | dict[str, list[ToolMessage]] ] = [] # combine all parent commands with goto into a single parent command parent_command: Command | None = None for output in outputs: if isinstance(output, Command): if ( output.graph is Command.PARENT and isinstance(output.goto, list) and all(isinstance(send, Send) for send in output.goto) ): if parent_command: parent_command = replace( parent_command, goto=cast("list[Send]", parent_command.goto) + output.goto, ) else: parent_command = Command(graph=Command.PARENT, goto=output.goto) else: combined_outputs.append(output) else: combined_outputs.append( [output] if input_type == "list" else {self._messages_key: [output]} ) if parent_command: combined_outputs.append(parent_command) return combined_outputs def _execute_tool_sync( self, request: ToolCallRequest, input_type: Literal["list", "dict", "tool_calls"], config: RunnableConfig, ) -> ToolMessage | Command: """Execute tool call with configured error handling. Args: request: Tool execution request. input_type: Input format. config: Runnable configuration. Returns: ToolMessage or Command. Raises: Exception: If tool fails and handle_tool_errors is False. """ call = request.tool_call tool = request.tool # Validate tool exists when we actually need to execute it if tool is None: if invalid_tool_message := self._validate_tool_call(call): return invalid_tool_message # This should never happen if validation works correctly msg = f"Tool {call['name']} is not registered with ToolNode" raise TypeError(msg) # Inject state, store, and runtime right before invocation injected_call = self._inject_tool_args(call, request.runtime) call_args = {**injected_call, "type": "tool_call"} try: try: response = tool.invoke(call_args, config) except ValidationError as exc: # Filter out errors for injected arguments injected = self._injected_args.get(call["name"]) filtered_errors = _filter_validation_errors(exc, injected) # Use original call["args"] without injected values for error reporting raise ToolInvocationError( call["name"], exc, call["args"], filtered_errors ) from exc # GraphInterrupt is a special exception that will always be raised. # It can be triggered in the following scenarios, # Where GraphInterrupt(GraphBubbleUp) is raised from an `interrupt` invocation # most commonly: # (1) a GraphInterrupt is raised inside a tool # (2) a GraphInterrupt is raised inside a graph node for a graph called as a tool # (3) a GraphInterrupt is raised when a subgraph is interrupted inside a graph # called as a tool # (2 and 3 can happen in a "supervisor w/ tools" multi-agent architecture) except GraphBubbleUp: raise except Exception as e: # Determine which exception types are handled handled_types: tuple[type[Exception], ...] if isinstance(self._handle_tool_errors, type) and issubclass( self._handle_tool_errors, Exception ): handled_types = (self._handle_tool_errors,) elif isinstance(self._handle_tool_errors, tuple): handled_types = self._handle_tool_errors elif callable(self._handle_tool_errors) and not isinstance( self._handle_tool_errors, type ): handled_types = _infer_handled_types(self._handle_tool_errors) else: # default behavior is catching all exceptions handled_types = (Exception,) # Check if this error should be handled if not self._handle_tool_errors or not isinstance(e, handled_types): raise # Error is handled - create error ToolMessage content = _handle_tool_error(e, flag=self._handle_tool_errors) return ToolMessage( content=content, name=call["name"], tool_call_id=call["id"], status="error", ) # Process successful response if isinstance(response, Command): # Validate Command before returning to handler return self._validate_tool_command(response, request.tool_call, input_type) if isinstance(response, ToolMessage): response.content = cast("str | list", msg_content_output(response.content)) return response msg = f"Tool {call['name']} returned unexpected type: {type(response)}" raise TypeError(msg) def _run_one( self, call: ToolCall, input_type: Literal["list", "dict", "tool_calls"], tool_runtime: ToolRuntime, ) -> ToolMessage | Command: """Execute single tool call with wrap_tool_call wrapper if configured. Args: call: Tool call dict. input_type: Input format. tool_runtime: Tool runtime. Returns: ToolMessage or Command. """ # Validation is deferred to _execute_tool_sync to allow interceptors # to short-circuit requests for unregistered tools tool = self.tools_by_name.get(call["name"]) # Create the tool request with state and runtime tool_request = ToolCallRequest( tool_call=call, tool=tool, state=tool_runtime.state, runtime=tool_runtime, ) config = tool_runtime.config if self._wrap_tool_call is None: # No wrapper - execute directly return self._execute_tool_sync(tool_request, input_type, config) # Define execute callable that can be called multiple times def execute(req: ToolCallRequest) -> ToolMessage | Command: """Execute tool with given request. Can be called multiple times.""" return self._execute_tool_sync(req, input_type, config) # Call wrapper with request and execute callable try: return self._wrap_tool_call(tool_request, execute) except Exception as e: # Wrapper threw an exception if not self._handle_tool_errors: raise # Convert to error message content = _handle_tool_error(e, flag=self._handle_tool_errors) return ToolMessage( content=content, name=tool_request.tool_call["name"], tool_call_id=tool_request.tool_call["id"], status="error", ) async def _execute_tool_async( self, request: ToolCallRequest, input_type: Literal["list", "dict", "tool_calls"], config: RunnableConfig, ) -> ToolMessage | Command: """Execute tool call asynchronously with configured error handling. Args: request: Tool execution request. input_type: Input format. config: Runnable configuration. Returns: ToolMessage or Command. Raises: Exception: If tool fails and handle_tool_errors is False. """ call = request.tool_call tool = request.tool # Validate tool exists when we actually need to execute it if tool is None: if invalid_tool_message := self._validate_tool_call(call): return invalid_tool_message # This should never happen if validation works correctly msg = f"Tool {call['name']} is not registered with ToolNode" raise TypeError(msg) # Inject state, store, and runtime right before invocation injected_call = self._inject_tool_args(call, request.runtime) call_args = {**injected_call, "type": "tool_call"} try: try: response = await tool.ainvoke(call_args, config) except ValidationError as exc: # Filter out errors for injected arguments injected = self._injected_args.get(call["name"]) filtered_errors = _filter_validation_errors(exc, injected) # Use original call["args"] without injected values for error reporting raise ToolInvocationError( call["name"], exc, call["args"], filtered_errors ) from exc # GraphInterrupt is a special exception that will always be raised. # It can be triggered in the following scenarios, # Where GraphInterrupt(GraphBubbleUp) is raised from an `interrupt` invocation # most commonly: # (1) a GraphInterrupt is raised inside a tool # (2) a GraphInterrupt is raised inside a graph node for a graph called as a tool # (3) a GraphInterrupt is raised when a subgraph is interrupted inside a graph # called as a tool # (2 and 3 can happen in a "supervisor w/ tools" multi-agent architecture) except GraphBubbleUp: raise except Exception as e: # Determine which exception types are handled handled_types: tuple[type[Exception], ...] if isinstance(self._handle_tool_errors, type) and issubclass( self._handle_tool_errors, Exception ): handled_types = (self._handle_tool_errors,) elif isinstance(self._handle_tool_errors, tuple): handled_types = self._handle_tool_errors elif callable(self._handle_tool_errors) and not isinstance( self._handle_tool_errors, type ): handled_types = _infer_handled_types(self._handle_tool_errors) else: # default behavior is catching all exceptions handled_types = (Exception,) # Check if this error should be handled if not self._handle_tool_errors or not isinstance(e, handled_types): raise # Error is handled - create error ToolMessage content = _handle_tool_error(e, flag=self._handle_tool_errors) return ToolMessage( content=content, name=call["name"], tool_call_id=call["id"], status="error", ) # Process successful response if isinstance(response, Command): # Validate Command before returning to handler return self._validate_tool_command(response, request.tool_call, input_type) if isinstance(response, ToolMessage): response.content = cast("str | list", msg_content_output(response.content)) return response msg = f"Tool {call['name']} returned unexpected type: {type(response)}" raise TypeError(msg) async def _arun_one( self, call: ToolCall, input_type: Literal["list", "dict", "tool_calls"], tool_runtime: ToolRuntime, ) -> ToolMessage | Command: """Execute single tool call asynchronously with awrap_tool_call wrapper if configured. Args: call: Tool call dict. input_type: Input format. tool_runtime: Tool runtime. Returns: ToolMessage or Command. """ # Validation is deferred to _execute_tool_async to allow interceptors # to short-circuit requests for unregistered tools tool = self.tools_by_name.get(call["name"]) # Create the tool request with state and runtime tool_request = ToolCallRequest( tool_call=call, tool=tool, state=tool_runtime.state, runtime=tool_runtime, ) config = tool_runtime.config if self._awrap_tool_call is None and self._wrap_tool_call is None: # No wrapper - execute directly return await self._execute_tool_async(tool_request, input_type, config) # Define async execute callable that can be called multiple times async def execute(req: ToolCallRequest) -> ToolMessage | Command: """Execute tool with given request. Can be called multiple times.""" return await self._execute_tool_async(req, input_type, config) def _sync_execute(req: ToolCallRequest) -> ToolMessage | Command: """Sync execute fallback for sync wrapper.""" return self._execute_tool_sync(req, input_type, config) # Call wrapper with request and execute callable try: if self._awrap_tool_call is not None: return await self._awrap_tool_call(tool_request, execute) # None check was performed above already self._wrap_tool_call = cast("ToolCallWrapper", self._wrap_tool_call) return self._wrap_tool_call(tool_request, _sync_execute) except Exception as e: # Wrapper threw an exception if not self._handle_tool_errors: raise # Convert to error message content = _handle_tool_error(e, flag=self._handle_tool_errors) return ToolMessage( content=content, name=tool_request.tool_call["name"], tool_call_id=tool_request.tool_call["id"], status="error", ) def _parse_input( self, input: list[AnyMessage] | dict[str, Any] | BaseModel, ) -> tuple[list[ToolCall], Literal["list", "dict", "tool_calls"]]: input_type: Literal["list", "dict", "tool_calls"] if isinstance(input, list): if isinstance(input[-1], dict) and input[-1].get("type") == "tool_call": input_type = "tool_calls" tool_calls = cast("list[ToolCall]", input) return tool_calls, input_type input_type = "list" messages = input elif ( isinstance(input, dict) and input.get("__type") == "tool_call_with_context" ): # Handle ToolCallWithContext from Send API # mypy will not be able to type narrow correctly since the signature # for input contains dict[str, Any]. We'd need to narrow dict[str, Any] # before we can apply correct typing. input_with_ctx = cast("ToolCallWithContext", input) input_type = "tool_calls" return [input_with_ctx["tool_call"]], input_type elif isinstance(input, dict) and ( messages := input.get(self._messages_key, []) ): input_type = "dict" elif messages := getattr(input, self._messages_key, []): # Assume dataclass-like state that can coerce from dict input_type = "dict" else: msg = "No message found in input" raise ValueError(msg) try: latest_ai_message = next( m for m in reversed(messages) if isinstance(m, AIMessage) ) except StopIteration: msg = "No AIMessage found in input" raise ValueError(msg) tool_calls = list(latest_ai_message.tool_calls) return tool_calls, input_type def _validate_tool_call(self, call: ToolCall) -> ToolMessage | None: requested_tool = call["name"] if requested_tool not in self.tools_by_name: all_tool_names = list(self.tools_by_name.keys()) content = INVALID_TOOL_NAME_ERROR_TEMPLATE.format( requested_tool=requested_tool, available_tools=", ".join(all_tool_names), ) return ToolMessage( content, name=requested_tool, tool_call_id=call["id"], status="error" ) return None def _extract_state( self, input: list[AnyMessage] | dict[str, Any] | BaseModel ) -> list[AnyMessage] | dict[str, Any] | BaseModel: """Extract state from input, handling ToolCallWithContext if present. Args: input: The input which may be raw state or ToolCallWithContext. Returns: The actual state to pass to wrap_tool_call wrappers. """ if isinstance(input, dict) and input.get("__type") == "tool_call_with_context": return input["state"] return input def _inject_tool_args( self, tool_call: ToolCall, tool_runtime: ToolRuntime, ) -> ToolCall: """Inject graph state, store, and runtime into tool call arguments. This is an internal method that enables tools to access graph context that should not be controlled by the model. Tools can declare dependencies on graph state, persistent storage, or runtime context using InjectedState, InjectedStore, and ToolRuntime annotations. This method automatically identifies these dependencies and injects the appropriate values. The injection process preserves the original tool call structure while adding the necessary context arguments. This allows tools to be both model-callable and context-aware without exposing internal state management to the model. Args: tool_call: The tool call dictionary to augment with injected arguments. Must contain 'name', 'args', 'id', and 'type' fields. tool_runtime: The ToolRuntime instance containing all runtime context (state, config, store, context, stream_writer) to inject into tools. Returns: A new ToolCall dictionary with the same structure as the input but with additional arguments injected based on the tool's annotation requirements. Raises: ValueError: If a tool requires store injection but no store is provided, or if state injection requirements cannot be satisfied. !!! note This method is called automatically during tool execution. It should not be called from outside the `ToolNode`. """ if tool_call["name"] not in self.tools_by_name: return tool_call injected = self._injected_args.get(tool_call["name"]) if not injected: return tool_call tool_call_copy: ToolCall = copy(tool_call) injected_args = {} # Inject state if injected.state: state = tool_runtime.state # Handle list state by converting to dict if isinstance(state, list): required_fields = list(injected.state.values()) if ( len(required_fields) == 1 and required_fields[0] == self._messages_key ) or required_fields[0] is None: state = {self._messages_key: state} else: err_msg = ( f"Invalid input to ToolNode. Tool {tool_call['name']} requires " f"graph state dict as input." ) if any(state_field for state_field in injected.state.values()): required_fields_str = ", ".join(f for f in required_fields if f) err_msg += ( f" State should contain fields {required_fields_str}." ) raise ValueError(err_msg) # Extract state values if isinstance(state, dict): for tool_arg, state_field in injected.state.items(): injected_args[tool_arg] = ( state[state_field] if state_field else state ) else: for tool_arg, state_field in injected.state.items(): injected_args[tool_arg] = ( getattr(state, state_field) if state_field else state ) # Inject store if injected.store: if tool_runtime.store is None: msg = ( "Cannot inject store into tools with InjectedStore annotations - " "please compile your graph with a store." ) raise ValueError(msg) injected_args[injected.store] = tool_runtime.store # Inject runtime if injected.runtime: injected_args[injected.runtime] = tool_runtime tool_call_copy["args"] = {**tool_call_copy["args"], **injected_args} return tool_call_copy def _validate_tool_command( self, command: Command, call: ToolCall, input_type: Literal["list", "dict", "tool_calls"], ) -> Command: if isinstance(command.update, dict): # input type is dict when ToolNode is invoked with a dict input # (e.g. {"messages": [AIMessage(..., tool_calls=[...])]}) if input_type not in ("dict", "tool_calls"): msg = ( "Tools can provide a dict in Command.update only when using dict " f"with '{self._messages_key}' key as ToolNode input, " f"got: {command.update} for tool '{call['name']}'" ) raise ValueError(msg) updated_command = deepcopy(command) state_update = cast("dict[str, Any]", updated_command.update) or {} messages_update = state_update.get(self._messages_key, []) elif isinstance(command.update, list): # Input type is list when ToolNode is invoked with a list input # (e.g. [AIMessage(..., tool_calls=[...])]) if input_type != "list": msg = ( "Tools can provide a list of messages in Command.update " "only when using list of messages as ToolNode input, " f"got: {command.update} for tool '{call['name']}'" ) raise ValueError(msg) updated_command = deepcopy(command) messages_update = updated_command.update else: return command # convert to message objects if updates are in a dict format messages_update = convert_to_messages(messages_update) # no validation needed if all messages are being removed if messages_update == [RemoveMessage(id=REMOVE_ALL_MESSAGES)]: return updated_command has_matching_tool_message = False for message in messages_update: if not isinstance(message, ToolMessage): continue if message.tool_call_id == call["id"]: message.name = call["name"] has_matching_tool_message = True # validate that we always have a ToolMessage matching the tool call in # Command.update if command is sent to the CURRENT graph if updated_command.graph is None and not has_matching_tool_message: example_update = ( '`Command(update={"messages": ' '[ToolMessage("Success", tool_call_id=tool_call_id), ...]}, ...)`' if input_type == "dict" else "`Command(update=" '[ToolMessage("Success", tool_call_id=tool_call_id), ...], ...)`' ) msg = ( "Expected to have a matching ToolMessage in Command.update " f"for tool '{call['name']}', got: {messages_update}. " "Every tool call (LLM requesting to call a tool) " "in the message history MUST have a corresponding ToolMessage. " f"You can fix it by modifying the tool to return {example_update}." ) raise ValueError(msg) return updated_command def tools_condition( state: list[AnyMessage] | dict[str, Any] | BaseModel, messages_key: str = "messages", ) -> Literal["tools", "__end__"]: """Conditional routing function for tool-calling workflows. This utility function implements the standard conditional logic for ReAct-style agents: if the last `AIMessage` contains tool calls, route to the tool execution node; otherwise, end the workflow. This pattern is fundamental to most tool-calling agent architectures. The function handles multiple state formats commonly used in LangGraph applications, making it flexible for different graph designs while maintaining consistent behavior. Args: state: The current graph state to examine for tool calls. Supported formats: - Dictionary containing a messages key (for `StateGraph`) - `BaseModel` instance with a messages attribute messages_key: The key or attribute name containing the message list in the state. This allows customization for graphs using different state schemas. Returns: Either `'tools'` if tool calls are present in the last `AIMessage`, or `'__end__'` to terminate the workflow. These are the standard routing destinations for tool-calling conditional edges. Raises: ValueError: If no messages can be found in the provided state format. Example: Basic usage in a ReAct agent: ```python from langgraph.graph import StateGraph from langchain.tools import ToolNode from langchain.tools.tool_node import tools_condition from typing_extensions import TypedDict class State(TypedDict): messages: list graph = StateGraph(State) graph.add_node("llm", call_model) graph.add_node("tools", ToolNode([my_tool])) graph.add_conditional_edges( "llm", tools_condition, # Routes to "tools" or "__end__" {"tools": "tools", "__end__": "__end__"}, ) ``` Custom messages key: ```python def custom_condition(state): return tools_condition(state, messages_key="chat_history") ``` !!! note This function is designed to work seamlessly with `ToolNode` and standard LangGraph patterns. It expects the last message to be an `AIMessage` when tool calls are present, which is the standard output format for tool-calling language models. """ if isinstance(state, list): ai_message = state[-1] elif (isinstance(state, dict) and (messages := state.get(messages_key, []))) or ( messages := getattr(state, messages_key, []) ): ai_message = messages[-1] else: msg = f"No messages found in input state to tool_edge: {state}" raise ValueError(msg) if hasattr(ai_message, "tool_calls") and len(ai_message.tool_calls) > 0: return "tools" return "__end__" @dataclass class ToolRuntime(_DirectlyInjectedToolArg, Generic[ContextT, StateT]): """Runtime context automatically injected into tools. When a tool function has a parameter named `tool_runtime` with type hint `ToolRuntime`, the tool execution system will automatically inject an instance containing: - `state`: The current graph state - `tool_call_id`: The ID of the current tool call - `config`: `RunnableConfig` for the current execution - `context`: Runtime context (from langgraph `Runtime`) - `store`: `BaseStore` instance for persistent storage (from langgraph `Runtime`) - `stream_writer`: `StreamWriter` for streaming output (from langgraph `Runtime`) No `Annotated` wrapper is needed - just use `runtime: ToolRuntime` as a parameter. Example: ```python from langchain_core.tools import tool from langchain.tools import ToolRuntime @tool def my_tool(x: int, runtime: ToolRuntime) -> str: \"\"\"Tool that accesses runtime context.\"\"\" # Access state messages = tool_runtime.state["messages"] # Access tool_call_id print(f"Tool call ID: {tool_runtime.tool_call_id}") # Access config print(f"Run ID: {tool_runtime.config.get('run_id')}") # Access runtime context user_id = tool_runtime.context.get("user_id") # Access store tool_runtime.store.put(("metrics",), "count", 1) # Stream output tool_runtime.stream_writer.write("Processing...") return f"Processed {x}" ``` !!! note This is a marker class used for type checking and detection. The actual runtime object will be constructed during tool execution. """ state: StateT context: ContextT config: RunnableConfig stream_writer: StreamWriter tool_call_id: str | None store: BaseStore | None class InjectedState(InjectedToolArg): """Annotation for injecting graph state into tool arguments. This annotation enables tools to access graph state without exposing state management details to the language model. Tools annotated with `InjectedState` receive state data automatically during execution while remaining invisible to the model's tool-calling interface. Args: field: Optional key to extract from the state dictionary. If `None`, the entire state is injected. If specified, only that field's value is injected. This allows tools to request specific state components rather than processing the full state structure. Example: ```python from typing import List from typing_extensions import Annotated, TypedDict from langchain_core.messages import BaseMessage, AIMessage from langchain.tools import InjectedState, ToolNode, tool class AgentState(TypedDict): messages: List[BaseMessage] foo: str @tool def state_tool(x: int, state: Annotated[dict, InjectedState]) -> str: '''Do something with state.''' if len(state["messages"]) > 2: return state["foo"] + str(x) else: return "not enough messages" @tool def foo_tool(x: int, foo: Annotated[str, InjectedState("foo")]) -> str: '''Do something else with state.''' return foo + str(x + 1) node = ToolNode([state_tool, foo_tool]) tool_call1 = {"name": "state_tool", "args": {"x": 1}, "id": "1", "type": "tool_call"} tool_call2 = {"name": "foo_tool", "args": {"x": 1}, "id": "2", "type": "tool_call"} state = { "messages": [AIMessage("", tool_calls=[tool_call1, tool_call2])], "foo": "bar", } node.invoke(state) ``` ```python [ ToolMessage(content="not enough messages", name="state_tool", tool_call_id="1"), ToolMessage(content="bar2", name="foo_tool", tool_call_id="2"), ] ``` !!! note - `InjectedState` arguments are automatically excluded from tool schemas presented to language models - `ToolNode` handles the injection process during execution - Tools can mix regular arguments (controlled by the model) with injected arguments (controlled by the system) - State injection occurs after the model generates tool calls but before tool execution """ def __init__(self, field: str | None = None) -> None: """Initialize the `InjectedState` annotation.""" self.field = field class InjectedStore(InjectedToolArg): """Annotation for injecting persistent store into tool arguments. This annotation enables tools to access LangGraph's persistent storage system without exposing storage details to the language model. Tools annotated with `InjectedStore` receive the store instance automatically during execution while remaining invisible to the model's tool-calling interface. The store provides persistent, cross-session data storage that tools can use for maintaining context, user preferences, or any other data that needs to persist beyond individual workflow executions. !!! warning `InjectedStore` annotation requires `langchain-core >= 0.3.8` Example: ```python from typing_extensions import Annotated from langgraph.store.memory import InMemoryStore from langchain.tools import InjectedStore, ToolNode, tool @tool def save_preference( key: str, value: str, store: Annotated[Any, InjectedStore()] ) -> str: \"\"\"Save user preference to persistent storage.\"\"\" store.put(("preferences",), key, value) return f"Saved {key} = {value}" @tool def get_preference( key: str, store: Annotated[Any, InjectedStore()] ) -> str: \"\"\"Retrieve user preference from persistent storage.\"\"\" result = store.get(("preferences",), key) return result.value if result else "Not found" ``` Usage with `ToolNode` and graph compilation: ```python from langgraph.graph import StateGraph from langgraph.store.memory import InMemoryStore store = InMemoryStore() tool_node = ToolNode([save_preference, get_preference]) graph = StateGraph(State) graph.add_node("tools", tool_node) compiled_graph = graph.compile(store=store) # Store is injected automatically ``` Cross-session persistence: ```python # First session result1 = graph.invoke({"messages": [HumanMessage("Save my favorite color as blue")]}) # Later session - data persists result2 = graph.invoke({"messages": [HumanMessage("What's my favorite color?")]}) ``` !!! note - `InjectedStore` arguments are automatically excluded from tool schemas presented to language models - The store instance is automatically injected by `ToolNode` during execution - Tools can access namespaced storage using the store's get/put methods - Store injection requires the graph to be compiled with a store instance - Multiple tools can share the same store instance for data consistency """ def _is_injection( type_arg: Any, injection_type: type[InjectedState | InjectedStore | ToolRuntime], ) -> bool: """Check if a type argument represents an injection annotation. This utility function determines whether a type annotation indicates that an argument should be injected with state or store data. It handles both direct annotations and nested annotations within Union or Annotated types. Args: type_arg: The type argument to check for injection annotations. injection_type: The injection type to look for (InjectedState or InjectedStore). Returns: True if the type argument contains the specified injection annotation. """ if isinstance(type_arg, injection_type) or ( isinstance(type_arg, type) and issubclass(type_arg, injection_type) ): return True origin_ = get_origin(type_arg) if origin_ is Union or origin_ is Annotated: return any(_is_injection(ta, injection_type) for ta in get_args(type_arg)) return False def _get_injection_from_type( type_: Any, injection_type: type[InjectedState | InjectedStore | ToolRuntime] ) -> Any | None: """Extract injection instance from a type annotation. Args: type_: The type annotation to check. injection_type: The injection type to look for. Returns: The injection instance if found, True if injection marker found without instance, None otherwise. """ type_args = get_args(type_) matches = [arg for arg in type_args if _is_injection(arg, injection_type)] if len(matches) > 1: msg = ( f"A tool argument should not be annotated with {injection_type.__name__} " f"more than once. Found: {matches}" ) raise ValueError(msg) if len(matches) == 1: return matches[0] elif _is_injection(type_, injection_type): return True return None def _get_all_injected_args(tool: BaseTool) -> _InjectedArgs: """Extract all injected arguments from tool in a single pass. This function analyzes both the tool's input schema and function signature to identify all arguments that should be injected (state, store, runtime). Args: tool: The tool to analyze for injection requirements. Returns: _InjectedArgs structure containing all detected injections. """ # Get annotations from both schema and function signature full_schema = tool.get_input_schema() schema_annotations = get_all_basemodel_annotations(full_schema) func = getattr(tool, "func", None) or getattr(tool, "coroutine", None) func_annotations = get_type_hints(func, include_extras=True) if func else {} # Combine both annotation sources, preferring schema annotations # In the future, we might want to add more restrictions here... all_annotations = {**func_annotations, **schema_annotations} # Track injected args state_args: dict[str, str | None] = {} store_arg: str | None = None runtime_arg: str | None = None for name, type_ in all_annotations.items(): # Check for runtime (special case: parameter named "runtime") if name == "runtime": runtime_arg = name # Check for InjectedState if state_inj := _get_injection_from_type(type_, InjectedState): if isinstance(state_inj, InjectedState) and state_inj.field: state_args[name] = state_inj.field else: state_args[name] = None # Check for InjectedStore if _get_injection_from_type(type_, InjectedStore): store_arg = name # Check for ToolRuntime if _get_injection_from_type(type_, ToolRuntime): runtime_arg = name return _InjectedArgs( state=state_args, store=store_arg, runtime=runtime_arg, )