"""The LangGraph client implementations connect to the LangGraph API. This module provides both asynchronous (`get_client(url="http://localhost:2024")` or `LangGraphClient`) and synchronous (`get_sync_client(url="http://localhost:2024")` or `SyncLanggraphClient`) clients to interacting with the LangGraph API's core resources such as Assistants, Threads, Runs, and Cron jobs, as well as its persistent document Store. """ from __future__ import annotations import asyncio import functools import logging import os import re import sys import warnings from collections.abc import AsyncIterator, Callable, Iterator, Mapping, Sequence from types import TracebackType from typing import ( Any, Literal, cast, overload, ) import httpx import orjson import langgraph_sdk from langgraph_sdk.errors import _araise_for_status_typed, _raise_for_status_typed from langgraph_sdk.schema import ( All, Assistant, AssistantSelectField, AssistantSortBy, AssistantsSearchResponse, AssistantVersion, CancelAction, Checkpoint, Command, Config, Context, Cron, CronSelectField, CronSortBy, DisconnectMode, Durability, GraphSchema, IfNotExists, Input, Item, Json, ListNamespaceResponse, MultitaskStrategy, OnCompletionBehavior, OnConflictBehavior, QueryParamTypes, Run, RunCreate, RunCreateMetadata, RunSelectField, RunStatus, SearchItemsResponse, SortOrder, StreamMode, StreamPart, Subgraphs, Thread, ThreadSelectField, ThreadSortBy, ThreadState, ThreadStatus, ThreadStreamMode, ThreadUpdateStateResponse, ) from langgraph_sdk.sse import SSEDecoder, aiter_lines_raw, iter_lines_raw logger = logging.getLogger(__name__) RESERVED_HEADERS = ("x-api-key",) NOT_PROVIDED = cast(None, object()) def _get_api_key(api_key: str | None = NOT_PROVIDED) -> str | None: """Get the API key from the environment. Precedence: 1. explicit string argument 2. LANGGRAPH_API_KEY (if api_key not provided) 3. LANGSMITH_API_KEY (if api_key not provided) 4. LANGCHAIN_API_KEY (if api_key not provided) Args: api_key: The API key to use. Can be: - A string: use this exact API key - None: explicitly skip loading from environment - NOT_PROVIDED (default): auto-load from environment variables """ if isinstance(api_key, str): return api_key if api_key is NOT_PROVIDED: # api_key is not explicitly provided, try to load from environment for prefix in ["LANGGRAPH", "LANGSMITH", "LANGCHAIN"]: if env := os.getenv(f"{prefix}_API_KEY"): return env.strip().strip('"').strip("'") # api_key is explicitly None, don't load from environment return None def _get_headers( api_key: str | None, custom_headers: Mapping[str, str] | None, ) -> dict[str, str]: """Combine api_key and custom user-provided headers.""" custom_headers = custom_headers or {} for header in RESERVED_HEADERS: if header in custom_headers: raise ValueError(f"Cannot set reserved header '{header}'") headers = { "User-Agent": f"langgraph-sdk-py/{langgraph_sdk.__version__}", **custom_headers, } resolved_api_key = _get_api_key(api_key) if resolved_api_key: headers["x-api-key"] = resolved_api_key return headers def _orjson_default(obj: Any) -> Any: is_class = isinstance(obj, type) if hasattr(obj, "model_dump") and callable(obj.model_dump): if is_class: raise TypeError( f"Cannot JSON-serialize type object: {obj!r}. Did you mean to pass an instance of the object instead?" f"\nReceived type: {obj!r}" ) return obj.model_dump() elif hasattr(obj, "dict") and callable(obj.dict): if is_class: raise TypeError( f"Cannot JSON-serialize type object: {obj!r}. Did you mean to pass an instance of the object instead?" f"\nReceived type: {obj!r}" ) return obj.dict() elif isinstance(obj, (set, frozenset)): return list(obj) else: raise TypeError(f"Object of type {type(obj)} is not JSON serializable") # Compiled regex pattern for extracting run metadata from Content-Location header _RUN_METADATA_PATTERN = re.compile( r"(\/threads\/(?P.+))?\/runs\/(?P.+)" ) def _get_run_metadata_from_response( response: httpx.Response, ) -> RunCreateMetadata | None: """Extract run metadata from the response headers.""" if (content_location := response.headers.get("Content-Location")) and ( match := _RUN_METADATA_PATTERN.search(content_location) ): return RunCreateMetadata( run_id=match.group("run_id"), thread_id=match.group("thread_id") or None, ) return None def get_client( *, url: str | None = None, api_key: str | None = NOT_PROVIDED, headers: Mapping[str, str] | None = None, timeout: TimeoutTypes | None = None, ) -> LangGraphClient: """Create and configure a LangGraphClient. The client provides programmatic access to LangSmith Deployment. It supports both remote servers and local in-process connections (when running inside a LangGraph server). Args: url: Base URL of the LangGraph API. - If `None`, the client first attempts an in-process connection via ASGI transport. If that fails, it defers registration until after app initialization. This only works if the client is used from within the Agent server. api_key: API key for authentication. Can be: - A string: use this exact API key - `None`: explicitly skip loading from environment variables - Not provided (default): auto-load from environment in this order: 1. `LANGGRAPH_API_KEY` 2. `LANGSMITH_API_KEY` 3. `LANGCHAIN_API_KEY` headers: Additional HTTP headers to include in requests. Merged with authentication headers. timeout: HTTP timeout configuration. May be: - `httpx.Timeout` instance - float (total seconds) - tuple `(connect, read, write, pool)` in seconds Defaults: connect=5, read=300, write=300, pool=5. Returns: LangGraphClient: A top-level client exposing sub-clients for assistants, threads, runs, and cron operations. ???+ example "Connect to a remote server:" ```python from langgraph_sdk import get_client # get top-level LangGraphClient client = get_client(url="http://localhost:8123") # example usage: client..() assistants = await client.assistants.get(assistant_id="some_uuid") ``` ???+ example "Connect in-process to a running LangGraph server:" ```python from langgraph_sdk import get_client client = get_client(url=None) async def my_node(...): subagent_result = await client.runs.wait( thread_id=None, assistant_id="agent", input={"messages": [{"role": "user", "content": "Foo"}]}, ) ``` ???+ example "Skip auto-loading API key from environment:" ```python from langgraph_sdk import get_client # Don't load API key from environment variables client = get_client( url="http://localhost:8123", api_key=None ) ``` """ transport: httpx.AsyncBaseTransport | None = None if url is None: url = "http://api" if os.environ.get("__LANGGRAPH_DEFER_LOOPBACK_TRANSPORT") == "true": transport = get_asgi_transport()(app=None, root_path="/noauth") _registered_transports.append(transport) else: try: from langgraph_api.server import app # type: ignore transport = get_asgi_transport()(app, root_path="/noauth") except Exception: logger.debug( "Failed to connect to in-process LangGraph server. Deferring configuration.", exc_info=True, ) transport = get_asgi_transport()(app=None, root_path="/noauth") _registered_transports.append(transport) if transport is None: transport = httpx.AsyncHTTPTransport(retries=5) client = httpx.AsyncClient( base_url=url, transport=transport, timeout=( httpx.Timeout(timeout) # ty: ignore[invalid-argument-type] if timeout is not None else httpx.Timeout(connect=5, read=300, write=300, pool=5) ), headers=_get_headers(api_key, headers), ) return LangGraphClient(client) class LangGraphClient: """Top-level client for LangGraph API. Attributes: assistants: Manages versioned configuration for your graphs. threads: Handles (potentially) multi-turn interactions, such as conversational threads. runs: Controls individual invocations of the graph. crons: Manages scheduled operations. store: Interfaces with persistent, shared data storage. """ def __init__(self, client: httpx.AsyncClient) -> None: self.http = HttpClient(client) self.assistants = AssistantsClient(self.http) self.threads = ThreadsClient(self.http) self.runs = RunsClient(self.http) self.crons = CronClient(self.http) self.store = StoreClient(self.http) async def __aenter__(self) -> LangGraphClient: """Enter the async context manager.""" return self async def __aexit__( self, exc_type: type[BaseException] | None, exc_val: BaseException | None, exc_tb: TracebackType | None, ) -> None: """Exit the async context manager.""" await self.aclose() async def aclose(self) -> None: """Close the underlying HTTP client.""" if hasattr(self, "http"): await self.http.client.aclose() class HttpClient: """Handle async requests to the LangGraph API. Adds additional error messaging & content handling above the provided httpx client. Attributes: client (httpx.AsyncClient): Underlying HTTPX async client. """ def __init__(self, client: httpx.AsyncClient) -> None: self.client = client async def get( self, path: str, *, params: QueryParamTypes | None = None, headers: Mapping[str, str] | None = None, on_response: Callable[[httpx.Response], None] | None = None, ) -> Any: """Send a `GET` request.""" r = await self.client.get(path, params=params, headers=headers) if on_response: on_response(r) await _araise_for_status_typed(r) return await _adecode_json(r) async def post( self, path: str, *, json: dict[str, Any] | list | None, params: QueryParamTypes | None = None, headers: Mapping[str, str] | None = None, on_response: Callable[[httpx.Response], None] | None = None, ) -> Any: """Send a `POST` request.""" if json is not None: request_headers, content = await _aencode_json(json) else: request_headers, content = {}, b"" # Merge headers, with runtime headers taking precedence if headers: request_headers.update(headers) r = await self.client.post( path, headers=request_headers, content=content, params=params ) if on_response: on_response(r) await _araise_for_status_typed(r) return await _adecode_json(r) async def put( self, path: str, *, json: dict, params: QueryParamTypes | None = None, headers: Mapping[str, str] | None = None, on_response: Callable[[httpx.Response], None] | None = None, ) -> Any: """Send a `PUT` request.""" request_headers, content = await _aencode_json(json) if headers: request_headers.update(headers) r = await self.client.put( path, headers=request_headers, content=content, params=params ) if on_response: on_response(r) await _araise_for_status_typed(r) return await _adecode_json(r) async def patch( self, path: str, *, json: dict, params: QueryParamTypes | None = None, headers: Mapping[str, str] | None = None, on_response: Callable[[httpx.Response], None] | None = None, ) -> Any: """Send a `PATCH` request.""" request_headers, content = await _aencode_json(json) if headers: request_headers.update(headers) r = await self.client.patch( path, headers=request_headers, content=content, params=params ) if on_response: on_response(r) await _araise_for_status_typed(r) return await _adecode_json(r) async def delete( self, path: str, *, json: Any | None = None, params: QueryParamTypes | None = None, headers: Mapping[str, str] | None = None, on_response: Callable[[httpx.Response], None] | None = None, ) -> None: """Send a `DELETE` request.""" r = await self.client.request( "DELETE", path, json=json, params=params, headers=headers ) if on_response: on_response(r) await _araise_for_status_typed(r) async def request_reconnect( self, path: str, method: str, *, json: dict[str, Any] | None = None, params: QueryParamTypes | None = None, headers: Mapping[str, str] | None = None, on_response: Callable[[httpx.Response], None] | None = None, reconnect_limit: int = 5, ) -> Any: """Send a request that automatically reconnects to Location header.""" request_headers, content = await _aencode_json(json) if headers: request_headers.update(headers) async with self.client.stream( method, path, headers=request_headers, content=content, params=params ) as r: if on_response: on_response(r) try: r.raise_for_status() except httpx.HTTPStatusError as e: body = (await r.aread()).decode() if sys.version_info >= (3, 11): e.add_note(body) else: logger.error(f"Error from langgraph-api: {body}", exc_info=e) raise e loc = r.headers.get("location") if reconnect_limit <= 0 or not loc: return await _adecode_json(r) try: return await _adecode_json(r) except httpx.HTTPError: warnings.warn( f"Request failed, attempting reconnect to Location: {loc}", stacklevel=2, ) await r.aclose() return await self.request_reconnect( loc, "GET", headers=request_headers, # don't pass on_response so it's only called once reconnect_limit=reconnect_limit - 1, ) async def stream( self, path: str, method: str, *, json: dict[str, Any] | None = None, params: QueryParamTypes | None = None, headers: Mapping[str, str] | None = None, on_response: Callable[[httpx.Response], None] | None = None, ) -> AsyncIterator[StreamPart]: """Stream results using SSE.""" request_headers, content = await _aencode_json(json) request_headers["Accept"] = "text/event-stream" request_headers["Cache-Control"] = "no-store" # Add runtime headers with precedence if headers: request_headers.update(headers) reconnect_headers = { key: value for key, value in request_headers.items() if key.lower() not in {"content-length", "content-type"} } last_event_id: str | None = None reconnect_path: str | None = None reconnect_attempts = 0 max_reconnect_attempts = 5 while True: current_headers = dict( request_headers if reconnect_path is None else reconnect_headers ) if last_event_id is not None: current_headers["Last-Event-ID"] = last_event_id current_method = method if reconnect_path is None else "GET" current_content = content if reconnect_path is None else None current_params = params if reconnect_path is None else None retry = False async with self.client.stream( current_method, reconnect_path or path, headers=current_headers, content=current_content, params=current_params, ) as res: if reconnect_path is None and on_response: on_response(res) # check status await _araise_for_status_typed(res) # check content type content_type = res.headers.get("content-type", "").partition(";")[0] if "text/event-stream" not in content_type: raise httpx.TransportError( "Expected response header Content-Type to contain 'text/event-stream', " f"got {content_type!r}" ) reconnect_location = res.headers.get("location") if reconnect_location: reconnect_path = reconnect_location # parse SSE decoder = SSEDecoder() try: async for line in aiter_lines_raw(res): sse = decoder.decode(line=cast("bytes", line).rstrip(b"\n")) if sse is not None: if decoder.last_event_id is not None: last_event_id = decoder.last_event_id if sse.event or sse.data is not None: yield sse except httpx.HTTPError: # httpx.TransportError inherits from HTTPError, so transient # disconnects during streaming land here. if reconnect_path is None: raise retry = True else: if sse := decoder.decode(b""): if decoder.last_event_id is not None: last_event_id = decoder.last_event_id if sse.event or sse.data is not None: # decoder.decode(b"") flushes the in-flight event and may # return an empty placeholder when there is no pending # message. Skip these no-op events so the stream doesn't # emit a trailing blank item after reconnects. yield sse if retry: reconnect_attempts += 1 if reconnect_attempts > max_reconnect_attempts: raise httpx.TransportError( "Exceeded maximum SSE reconnection attempts" ) continue break async def _aencode_json(json: Any) -> tuple[dict[str, str], bytes | None]: if json is None: return {}, None body = await asyncio.get_running_loop().run_in_executor( None, orjson.dumps, json, _orjson_default, orjson.OPT_SERIALIZE_NUMPY | orjson.OPT_NON_STR_KEYS, ) content_length = str(len(body)) content_type = "application/json" headers = {"Content-Length": content_length, "Content-Type": content_type} return headers, body async def _adecode_json(r: httpx.Response) -> Any: body = await r.aread() return ( await asyncio.get_running_loop().run_in_executor(None, orjson.loads, body) if body else None ) class AssistantsClient: """Client for managing assistants in LangGraph. This class provides methods to interact with assistants, which are versioned configurations of your graph. ???+ example "Example" ```python client = get_client(url="http://localhost:2024") assistant = await client.assistants.get("assistant_id_123") ``` """ def __init__(self, http: HttpClient) -> None: self.http = http async def get( self, assistant_id: str, *, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> Assistant: """Get an assistant by ID. Args: assistant_id: The ID of the assistant to get. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: Assistant: Assistant Object. ???+ example "Example Usage" ```python assistant = await client.assistants.get( assistant_id="my_assistant_id" ) print(assistant) ``` ```shell ---------------------------------------------------- { 'assistant_id': 'my_assistant_id', 'graph_id': 'agent', 'created_at': '2024-06-25T17:10:33.109781+00:00', 'updated_at': '2024-06-25T17:10:33.109781+00:00', 'config': {}, 'metadata': {'created_by': 'system'}, 'version': 1, 'name': 'my_assistant' } ``` """ return await self.http.get( f"/assistants/{assistant_id}", headers=headers, params=params ) async def get_graph( self, assistant_id: str, *, xray: int | bool = False, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> dict[str, list[dict[str, Any]]]: """Get the graph of an assistant by ID. Args: assistant_id: The ID of the assistant to get the graph of. xray: Include graph representation of subgraphs. If an integer value is provided, only subgraphs with a depth less than or equal to the value will be included. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: Graph: The graph information for the assistant in JSON format. ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024") graph_info = await client.assistants.get_graph( assistant_id="my_assistant_id" ) print(graph_info) ``` ```shell -------------------------------------------------------------------------------------------------------------------------- { 'nodes': [ {'id': '__start__', 'type': 'schema', 'data': '__start__'}, {'id': '__end__', 'type': 'schema', 'data': '__end__'}, {'id': 'agent','type': 'runnable','data': {'id': ['langgraph', 'utils', 'RunnableCallable'],'name': 'agent'}}, ], 'edges': [ {'source': '__start__', 'target': 'agent'}, {'source': 'agent','target': '__end__'} ] } ``` """ query_params = {"xray": xray} if params: query_params.update(params) return await self.http.get( f"/assistants/{assistant_id}/graph", params=query_params, headers=headers ) async def get_schemas( self, assistant_id: str, *, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> GraphSchema: """Get the schemas of an assistant by ID. Args: assistant_id: The ID of the assistant to get the schema of. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: GraphSchema: The graph schema for the assistant. ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024") schema = await client.assistants.get_schemas( assistant_id="my_assistant_id" ) print(schema) ``` ```shell ---------------------------------------------------------------------------------------------------------------------------- { 'graph_id': 'agent', 'state_schema': { 'title': 'LangGraphInput', '$ref': '#/definitions/AgentState', 'definitions': { 'BaseMessage': { 'title': 'BaseMessage', 'description': 'Base abstract Message class. Messages are the inputs and outputs of ChatModels.', 'type': 'object', 'properties': { 'content': { 'title': 'Content', 'anyOf': [ {'type': 'string'}, {'type': 'array','items': {'anyOf': [{'type': 'string'}, {'type': 'object'}]}} ] }, 'additional_kwargs': { 'title': 'Additional Kwargs', 'type': 'object' }, 'response_metadata': { 'title': 'Response Metadata', 'type': 'object' }, 'type': { 'title': 'Type', 'type': 'string' }, 'name': { 'title': 'Name', 'type': 'string' }, 'id': { 'title': 'Id', 'type': 'string' } }, 'required': ['content', 'type'] }, 'AgentState': { 'title': 'AgentState', 'type': 'object', 'properties': { 'messages': { 'title': 'Messages', 'type': 'array', 'items': {'$ref': '#/definitions/BaseMessage'} } }, 'required': ['messages'] } } }, 'context_schema': { 'title': 'Context', 'type': 'object', 'properties': { 'model_name': { 'title': 'Model Name', 'enum': ['anthropic', 'openai'], 'type': 'string' } } } } ``` """ return await self.http.get( f"/assistants/{assistant_id}/schemas", headers=headers, params=params ) async def get_subgraphs( self, assistant_id: str, namespace: str | None = None, recurse: bool = False, *, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> Subgraphs: """Get the schemas of an assistant by ID. Args: assistant_id: The ID of the assistant to get the schema of. namespace: Optional namespace to filter by. recurse: Whether to recursively get subgraphs. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: Subgraphs: The graph schema for the assistant. """ get_params = {"recurse": recurse} if params: get_params = {**get_params, **params} if namespace is not None: return await self.http.get( f"/assistants/{assistant_id}/subgraphs/{namespace}", params=get_params, headers=headers, ) else: return await self.http.get( f"/assistants/{assistant_id}/subgraphs", params=get_params, headers=headers, ) async def create( self, graph_id: str | None, config: Config | None = None, *, context: Context | None = None, metadata: Json = None, assistant_id: str | None = None, if_exists: OnConflictBehavior | None = None, name: str | None = None, headers: Mapping[str, str] | None = None, description: str | None = None, params: QueryParamTypes | None = None, ) -> Assistant: """Create a new assistant. Useful when graph is configurable and you want to create different assistants based on different configurations. Args: graph_id: The ID of the graph the assistant should use. The graph ID is normally set in your langgraph.json configuration. config: Configuration to use for the graph. metadata: Metadata to add to assistant. context: Static context to add to the assistant. !!! version-added "Added in version 0.6.0" assistant_id: Assistant ID to use, will default to a random UUID if not provided. if_exists: How to handle duplicate creation. Defaults to 'raise' under the hood. Must be either 'raise' (raise error if duplicate), or 'do_nothing' (return existing assistant). name: The name of the assistant. Defaults to 'Untitled' under the hood. headers: Optional custom headers to include with the request. description: Optional description of the assistant. The description field is available for langgraph-api server version>=0.0.45 params: Optional query parameters to include with the request. Returns: Assistant: The created assistant. ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024") assistant = await client.assistants.create( graph_id="agent", context={"model_name": "openai"}, metadata={"number":1}, assistant_id="my-assistant-id", if_exists="do_nothing", name="my_name" ) ``` """ payload: dict[str, Any] = { "graph_id": graph_id, } if config: payload["config"] = config if context: payload["context"] = context if metadata: payload["metadata"] = metadata if assistant_id: payload["assistant_id"] = assistant_id if if_exists: payload["if_exists"] = if_exists if name: payload["name"] = name if description: payload["description"] = description return await self.http.post( "/assistants", json=payload, headers=headers, params=params ) async def update( self, assistant_id: str, *, graph_id: str | None = None, config: Config | None = None, context: Context | None = None, metadata: Json = None, name: str | None = None, headers: Mapping[str, str] | None = None, description: str | None = None, params: QueryParamTypes | None = None, ) -> Assistant: """Update an assistant. Use this to point to a different graph, update the configuration, or change the metadata of an assistant. Args: assistant_id: Assistant to update. graph_id: The ID of the graph the assistant should use. The graph ID is normally set in your langgraph.json configuration. If `None`, assistant will keep pointing to same graph. config: Configuration to use for the graph. context: Static context to add to the assistant. !!! version-added "Added in version 0.6.0" metadata: Metadata to merge with existing assistant metadata. name: The new name for the assistant. headers: Optional custom headers to include with the request. description: Optional description of the assistant. The description field is available for langgraph-api server version>=0.0.45 params: Optional query parameters to include with the request. Returns: The updated assistant. ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024") assistant = await client.assistants.update( assistant_id='e280dad7-8618-443f-87f1-8e41841c180f', graph_id="other-graph", context={"model_name": "anthropic"}, metadata={"number":2} ) ``` """ payload: dict[str, Any] = {} if graph_id: payload["graph_id"] = graph_id if config: payload["config"] = config if context: payload["context"] = context if metadata: payload["metadata"] = metadata if name: payload["name"] = name if description: payload["description"] = description return await self.http.patch( f"/assistants/{assistant_id}", json=payload, headers=headers, params=params, ) async def delete( self, assistant_id: str, *, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> None: """Delete an assistant. Args: assistant_id: The assistant ID to delete. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: `None` ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024") await client.assistants.delete( assistant_id="my_assistant_id" ) ``` """ await self.http.delete( f"/assistants/{assistant_id}", headers=headers, params=params ) @overload async def search( self, *, metadata: Json = None, graph_id: str | None = None, name: str | None = None, limit: int = 10, offset: int = 0, sort_by: AssistantSortBy | None = None, sort_order: SortOrder | None = None, select: list[AssistantSelectField] | None = None, response_format: Literal["object"], headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> AssistantsSearchResponse: ... @overload async def search( self, *, metadata: Json = None, graph_id: str | None = None, name: str | None = None, limit: int = 10, offset: int = 0, sort_by: AssistantSortBy | None = None, sort_order: SortOrder | None = None, select: list[AssistantSelectField] | None = None, response_format: Literal["array"] = "array", headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> list[Assistant]: ... async def search( self, *, metadata: Json = None, graph_id: str | None = None, name: str | None = None, limit: int = 10, offset: int = 0, sort_by: AssistantSortBy | None = None, sort_order: SortOrder | None = None, select: list[AssistantSelectField] | None = None, response_format: Literal["array", "object"] = "array", headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> AssistantsSearchResponse | list[Assistant]: """Search for assistants. Args: metadata: Metadata to filter by. Exact match filter for each KV pair. graph_id: The ID of the graph to filter by. The graph ID is normally set in your langgraph.json configuration. name: The name of the assistant to filter by. The filtering logic will match assistants where 'name' is a substring (case insensitive) of the assistant name. limit: The maximum number of results to return. offset: The number of results to skip. sort_by: The field to sort by. sort_order: The order to sort by. select: Specific assistant fields to include in the response. response_format: Controls the response shape. Use ``"array"`` (default) to return a bare list of assistants, or ``"object"`` to return a mapping containing assistants plus pagination metadata. Defaults to "array", though this default will be changed to "object" in a future release. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: A list of assistants (when ``response_format=\"array\"``) or a mapping with the assistants and the next pagination cursor (when ``response_format=\"object\"``). ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024") response = await client.assistants.search( metadata = {"name":"my_name"}, graph_id="my_graph_id", limit=5, offset=5, response_format="object" ) next_cursor = response["next"] assistants = response["assistants"] ``` """ if response_format not in ("array", "object"): raise ValueError( f"response_format must be 'array' or 'object', got {response_format!r}" ) payload: dict[str, Any] = { "limit": limit, "offset": offset, } if metadata: payload["metadata"] = metadata if graph_id: payload["graph_id"] = graph_id if name: payload["name"] = name if sort_by: payload["sort_by"] = sort_by if sort_order: payload["sort_order"] = sort_order if select: payload["select"] = select next_cursor: str | None = None def capture_pagination(response: httpx.Response) -> None: nonlocal next_cursor next_cursor = response.headers.get("X-Pagination-Next") assistants = cast( list[Assistant], await self.http.post( "/assistants/search", json=payload, headers=headers, params=params, on_response=capture_pagination if response_format == "object" else None, ), ) if response_format == "object": return {"assistants": assistants, "next": next_cursor} return assistants async def count( self, *, metadata: Json = None, graph_id: str | None = None, name: str | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> int: """Count assistants matching filters. Args: metadata: Metadata to filter by. Exact match for each key/value. graph_id: Optional graph id to filter by. name: Optional name to filter by. The filtering logic will match assistants where 'name' is a substring (case insensitive) of the assistant name. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: int: Number of assistants matching the criteria. """ payload: dict[str, Any] = {} if metadata: payload["metadata"] = metadata if graph_id: payload["graph_id"] = graph_id if name: payload["name"] = name return await self.http.post( "/assistants/count", json=payload, headers=headers, params=params ) async def get_versions( self, assistant_id: str, metadata: Json = None, limit: int = 10, offset: int = 0, *, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> list[AssistantVersion]: """List all versions of an assistant. Args: assistant_id: The assistant ID to get versions for. metadata: Metadata to filter versions by. Exact match filter for each KV pair. limit: The maximum number of versions to return. offset: The number of versions to skip. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: A list of assistant versions. ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024") assistant_versions = await client.assistants.get_versions( assistant_id="my_assistant_id" ) ``` """ payload: dict[str, Any] = { "limit": limit, "offset": offset, } if metadata: payload["metadata"] = metadata return await self.http.post( f"/assistants/{assistant_id}/versions", json=payload, headers=headers, params=params, ) async def set_latest( self, assistant_id: str, version: int, *, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> Assistant: """Change the version of an assistant. Args: assistant_id: The assistant ID to delete. version: The version to change to. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: Assistant Object. ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024") new_version_assistant = await client.assistants.set_latest( assistant_id="my_assistant_id", version=3 ) ``` """ payload: dict[str, Any] = {"version": version} return await self.http.post( f"/assistants/{assistant_id}/latest", json=payload, headers=headers, params=params, ) class ThreadsClient: """Client for managing threads in LangGraph. A thread maintains the state of a graph across multiple interactions/invocations (aka runs). It accumulates and persists the graph's state, allowing for continuity between separate invocations of the graph. ???+ example "Example" ```python client = get_client(url="http://localhost:2024")) new_thread = await client.threads.create(metadata={"user_id": "123"}) ``` """ def __init__(self, http: HttpClient) -> None: self.http = http async def get( self, thread_id: str, *, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> Thread: """Get a thread by ID. Args: thread_id: The ID of the thread to get. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: Thread object. ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024") thread = await client.threads.get( thread_id="my_thread_id" ) print(thread) ``` ```shell ----------------------------------------------------- { 'thread_id': 'my_thread_id', 'created_at': '2024-07-18T18:35:15.540834+00:00', 'updated_at': '2024-07-18T18:35:15.540834+00:00', 'metadata': {'graph_id': 'agent'} } ``` """ return await self.http.get( f"/threads/{thread_id}", headers=headers, params=params ) async def create( self, *, metadata: Json = None, thread_id: str | None = None, if_exists: OnConflictBehavior | None = None, supersteps: Sequence[dict[str, Sequence[dict[str, Any]]]] | None = None, graph_id: str | None = None, ttl: int | Mapping[str, Any] | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> Thread: """Create a new thread. Args: metadata: Metadata to add to thread. thread_id: ID of thread. If `None`, ID will be a randomly generated UUID. if_exists: How to handle duplicate creation. Defaults to 'raise' under the hood. Must be either 'raise' (raise error if duplicate), or 'do_nothing' (return existing thread). supersteps: Apply a list of supersteps when creating a thread, each containing a sequence of updates. Each update has `values` or `command` and `as_node`. Used for copying a thread between deployments. graph_id: Optional graph ID to associate with the thread. ttl: Optional time-to-live in minutes for the thread. You can pass an integer (minutes) or a mapping with keys `ttl` and optional `strategy` (defaults to "delete"). headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: The created thread. ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024") thread = await client.threads.create( metadata={"number":1}, thread_id="my-thread-id", if_exists="raise" ) ``` """ payload: dict[str, Any] = {} if thread_id: payload["thread_id"] = thread_id if metadata or graph_id: payload["metadata"] = { **(metadata or {}), **({"graph_id": graph_id} if graph_id else {}), } if if_exists: payload["if_exists"] = if_exists if supersteps: payload["supersteps"] = [ { "updates": [ { "values": u["values"], "command": u.get("command"), "as_node": u["as_node"], } for u in s["updates"] ] } for s in supersteps ] if ttl is not None: if isinstance(ttl, (int, float)): payload["ttl"] = {"ttl": ttl, "strategy": "delete"} else: payload["ttl"] = ttl return await self.http.post( "/threads", json=payload, headers=headers, params=params ) async def update( self, thread_id: str, *, metadata: Mapping[str, Any], ttl: int | Mapping[str, Any] | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> Thread: """Update a thread. Args: thread_id: ID of thread to update. metadata: Metadata to merge with existing thread metadata. ttl: Optional time-to-live in minutes for the thread. You can pass an integer (minutes) or a mapping with keys `ttl` and optional `strategy` (defaults to "delete"). headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: The created thread. ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024") thread = await client.threads.update( thread_id="my-thread-id", metadata={"number":1}, ttl=43_200, ) ``` """ payload: dict[str, Any] = {"metadata": metadata} if ttl is not None: if isinstance(ttl, (int, float)): payload["ttl"] = {"ttl": ttl, "strategy": "delete"} else: payload["ttl"] = ttl return await self.http.patch( f"/threads/{thread_id}", json=payload, headers=headers, params=params, ) async def delete( self, thread_id: str, *, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> None: """Delete a thread. Args: thread_id: The ID of the thread to delete. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: `None` ???+ example "Example Usage" ```python client = get_client(url="http://localhost2024) await client.threads.delete( thread_id="my_thread_id" ) ``` """ await self.http.delete(f"/threads/{thread_id}", headers=headers, params=params) async def search( self, *, metadata: Json = None, values: Json = None, ids: Sequence[str] | None = None, status: ThreadStatus | None = None, limit: int = 10, offset: int = 0, sort_by: ThreadSortBy | None = None, sort_order: SortOrder | None = None, select: list[ThreadSelectField] | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> list[Thread]: """Search for threads. Args: metadata: Thread metadata to filter on. values: State values to filter on. ids: List of thread IDs to filter by. status: Thread status to filter on. Must be one of 'idle', 'busy', 'interrupted' or 'error'. limit: Limit on number of threads to return. offset: Offset in threads table to start search from. sort_by: Sort by field. sort_order: Sort order. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: List of the threads matching the search parameters. ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024") threads = await client.threads.search( metadata={"number":1}, status="interrupted", limit=15, offset=5 ) ``` """ payload: dict[str, Any] = { "limit": limit, "offset": offset, } if metadata: payload["metadata"] = metadata if values: payload["values"] = values if ids: payload["ids"] = ids if status: payload["status"] = status if sort_by: payload["sort_by"] = sort_by if sort_order: payload["sort_order"] = sort_order if select: payload["select"] = select return await self.http.post( "/threads/search", json=payload, headers=headers, params=params, ) async def count( self, *, metadata: Json = None, values: Json = None, status: ThreadStatus | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> int: """Count threads matching filters. Args: metadata: Thread metadata to filter on. values: State values to filter on. status: Thread status to filter on. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: int: Number of threads matching the criteria. """ payload: dict[str, Any] = {} if metadata: payload["metadata"] = metadata if values: payload["values"] = values if status: payload["status"] = status return await self.http.post( "/threads/count", json=payload, headers=headers, params=params ) async def copy( self, thread_id: str, *, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> None: """Copy a thread. Args: thread_id: The ID of the thread to copy. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: `None` ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024) await client.threads.copy( thread_id="my_thread_id" ) ``` """ return await self.http.post( f"/threads/{thread_id}/copy", json=None, headers=headers, params=params ) async def get_state( self, thread_id: str, checkpoint: Checkpoint | None = None, checkpoint_id: str | None = None, # deprecated *, subgraphs: bool = False, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> ThreadState: """Get the state of a thread. Args: thread_id: The ID of the thread to get the state of. checkpoint: The checkpoint to get the state of. checkpoint_id: (deprecated) The checkpoint ID to get the state of. subgraphs: Include subgraphs states. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: The thread of the state. ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024) thread_state = await client.threads.get_state( thread_id="my_thread_id", checkpoint_id="my_checkpoint_id" ) print(thread_state) ``` ```shell ---------------------------------------------------------------------------------------------------------------------------------------------------------------------- { 'values': { 'messages': [ { 'content': 'how are you?', 'additional_kwargs': {}, 'response_metadata': {}, 'type': 'human', 'name': None, 'id': 'fe0a5778-cfe9-42ee-b807-0adaa1873c10', 'example': False }, { 'content': "I'm doing well, thanks for asking! I'm an AI assistant created by Anthropic to be helpful, honest, and harmless.", 'additional_kwargs': {}, 'response_metadata': {}, 'type': 'ai', 'name': None, 'id': 'run-159b782c-b679-4830-83c6-cef87798fe8b', 'example': False, 'tool_calls': [], 'invalid_tool_calls': [], 'usage_metadata': None } ] }, 'next': [], 'checkpoint': { 'thread_id': 'e2496803-ecd5-4e0c-a779-3226296181c2', 'checkpoint_ns': '', 'checkpoint_id': '1ef4a9b8-e6fb-67b1-8001-abd5184439d1' } 'metadata': { 'step': 1, 'run_id': '1ef4a9b8-d7da-679a-a45a-872054341df2', 'source': 'loop', 'writes': { 'agent': { 'messages': [ { 'id': 'run-159b782c-b679-4830-83c6-cef87798fe8b', 'name': None, 'type': 'ai', 'content': "I'm doing well, thanks for asking! I'm an AI assistant created by Anthropic to be helpful, honest, and harmless.", 'example': False, 'tool_calls': [], 'usage_metadata': None, 'additional_kwargs': {}, 'response_metadata': {}, 'invalid_tool_calls': [] } ] } }, 'user_id': None, 'graph_id': 'agent', 'thread_id': 'e2496803-ecd5-4e0c-a779-3226296181c2', 'created_by': 'system', 'assistant_id': 'fe096781-5601-53d2-b2f6-0d3403f7e9ca'}, 'created_at': '2024-07-25T15:35:44.184703+00:00', 'parent_config': { 'thread_id': 'e2496803-ecd5-4e0c-a779-3226296181c2', 'checkpoint_ns': '', 'checkpoint_id': '1ef4a9b8-d80d-6fa7-8000-9300467fad0f' } } ``` """ if checkpoint: return await self.http.post( f"/threads/{thread_id}/state/checkpoint", json={"checkpoint": checkpoint, "subgraphs": subgraphs}, headers=headers, params=params, ) elif checkpoint_id: get_params = {"subgraphs": subgraphs} if params: get_params = {**get_params, **params} return await self.http.get( f"/threads/{thread_id}/state/{checkpoint_id}", params=get_params, headers=headers, ) else: get_params = {"subgraphs": subgraphs} if params: get_params = {**get_params, **params} return await self.http.get( f"/threads/{thread_id}/state", params=get_params, headers=headers, ) async def update_state( self, thread_id: str, values: dict[str, Any] | Sequence[dict] | None, *, as_node: str | None = None, checkpoint: Checkpoint | None = None, checkpoint_id: str | None = None, # deprecated headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> ThreadUpdateStateResponse: """Update the state of a thread. Args: thread_id: The ID of the thread to update. values: The values to update the state with. as_node: Update the state as if this node had just executed. checkpoint: The checkpoint to update the state of. checkpoint_id: (deprecated) The checkpoint ID to update the state of. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: Response after updating a thread's state. ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024) response = await client.threads.update_state( thread_id="my_thread_id", values={"messages":[{"role": "user", "content": "hello!"}]}, as_node="my_node", ) print(response) ``` ```shell ---------------------------------------------------------------------------------------------------------------------------------------------------------------------- { 'checkpoint': { 'thread_id': 'e2496803-ecd5-4e0c-a779-3226296181c2', 'checkpoint_ns': '', 'checkpoint_id': '1ef4a9b8-e6fb-67b1-8001-abd5184439d1', 'checkpoint_map': {} } } ``` """ payload: dict[str, Any] = { "values": values, } if checkpoint_id: payload["checkpoint_id"] = checkpoint_id if checkpoint: payload["checkpoint"] = checkpoint if as_node: payload["as_node"] = as_node return await self.http.post( f"/threads/{thread_id}/state", json=payload, headers=headers, params=params ) async def get_history( self, thread_id: str, *, limit: int = 10, before: str | Checkpoint | None = None, metadata: Mapping[str, Any] | None = None, checkpoint: Checkpoint | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> list[ThreadState]: """Get the state history of a thread. Args: thread_id: The ID of the thread to get the state history for. checkpoint: Return states for this subgraph. If empty defaults to root. limit: The maximum number of states to return. before: Return states before this checkpoint. metadata: Filter states by metadata key-value pairs. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: The state history of the thread. ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024) thread_state = await client.threads.get_history( thread_id="my_thread_id", limit=5, ) ``` """ payload: dict[str, Any] = { "limit": limit, } if before: payload["before"] = before if metadata: payload["metadata"] = metadata if checkpoint: payload["checkpoint"] = checkpoint return await self.http.post( f"/threads/{thread_id}/history", json=payload, headers=headers, params=params, ) async def join_stream( self, thread_id: str, *, last_event_id: str | None = None, stream_mode: ThreadStreamMode | Sequence[ThreadStreamMode] = "run_modes", headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> AsyncIterator[StreamPart]: """Get a stream of events for a thread. Args: thread_id: The ID of the thread to get the stream for. last_event_id: The ID of the last event to get. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: An iterator of stream parts. ???+ example "Example Usage" ```python for chunk in client.threads.join_stream( thread_id="my_thread_id", last_event_id="my_event_id", ): print(chunk) ``` """ query_params = { "stream_mode": stream_mode, } if params: query_params.update(params) return self.http.stream( f"/threads/{thread_id}/stream", "GET", headers={ **({"Last-Event-ID": last_event_id} if last_event_id else {}), **(headers or {}), }, params=query_params, ) class RunsClient: """Client for managing runs in LangGraph. A run is a single assistant invocation with optional input, config, context, and metadata. This client manages runs, which can be stateful (on threads) or stateless. ???+ example "Example" ```python client = get_client(url="http://localhost:2024") run = await client.runs.create(assistant_id="asst_123", thread_id="thread_456", input={"query": "Hello"}) ``` """ def __init__(self, http: HttpClient) -> None: self.http = http @overload def stream( self, thread_id: str, assistant_id: str, *, input: Input | None = None, command: Command | None = None, stream_mode: StreamMode | Sequence[StreamMode] = "values", stream_subgraphs: bool = False, stream_resumable: bool = False, metadata: Mapping[str, Any] | None = None, config: Config | None = None, context: Context | None = None, checkpoint: Checkpoint | None = None, checkpoint_id: str | None = None, checkpoint_during: bool | None = None, interrupt_before: All | Sequence[str] | None = None, interrupt_after: All | Sequence[str] | None = None, feedback_keys: Sequence[str] | None = None, on_disconnect: DisconnectMode | None = None, webhook: str | None = None, multitask_strategy: MultitaskStrategy | None = None, if_not_exists: IfNotExists | None = None, after_seconds: int | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, on_run_created: Callable[[RunCreateMetadata], None] | None = None, ) -> AsyncIterator[StreamPart]: ... @overload def stream( self, thread_id: None, assistant_id: str, *, input: Input | None = None, command: Command | None = None, stream_mode: StreamMode | Sequence[StreamMode] = "values", stream_subgraphs: bool = False, stream_resumable: bool = False, metadata: Mapping[str, Any] | None = None, config: Config | None = None, checkpoint_during: bool | None = None, interrupt_before: All | Sequence[str] | None = None, interrupt_after: All | Sequence[str] | None = None, feedback_keys: Sequence[str] | None = None, on_disconnect: DisconnectMode | None = None, on_completion: OnCompletionBehavior | None = None, if_not_exists: IfNotExists | None = None, webhook: str | None = None, after_seconds: int | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, on_run_created: Callable[[RunCreateMetadata], None] | None = None, ) -> AsyncIterator[StreamPart]: ... def stream( self, thread_id: str | None, assistant_id: str, *, input: Input | None = None, command: Command | None = None, stream_mode: StreamMode | Sequence[StreamMode] = "values", stream_subgraphs: bool = False, stream_resumable: bool = False, metadata: Mapping[str, Any] | None = None, config: Config | None = None, context: Context | None = None, checkpoint: Checkpoint | None = None, checkpoint_id: str | None = None, checkpoint_during: bool | None = None, # deprecated interrupt_before: All | Sequence[str] | None = None, interrupt_after: All | Sequence[str] | None = None, feedback_keys: Sequence[str] | None = None, on_disconnect: DisconnectMode | None = None, on_completion: OnCompletionBehavior | None = None, webhook: str | None = None, multitask_strategy: MultitaskStrategy | None = None, if_not_exists: IfNotExists | None = None, after_seconds: int | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, on_run_created: Callable[[RunCreateMetadata], None] | None = None, durability: Durability | None = None, ) -> AsyncIterator[StreamPart]: """Create a run and stream the results. Args: thread_id: the thread ID to assign to the thread. If `None` will create a stateless run. assistant_id: The assistant ID or graph name to stream from. If using graph name, will default to first assistant created from that graph. input: The input to the graph. command: A command to execute. Cannot be combined with input. stream_mode: The stream mode(s) to use. stream_subgraphs: Whether to stream output from subgraphs. stream_resumable: Whether the stream is considered resumable. If true, the stream can be resumed and replayed in its entirety even after disconnection. metadata: Metadata to assign to the run. config: The configuration for the assistant. context: Static context to add to the assistant. !!! version-added "Added in version 0.6.0" checkpoint: The checkpoint to resume from. checkpoint_during: (deprecated) Whether to checkpoint during the run (or only at the end/interruption). interrupt_before: Nodes to interrupt immediately before they get executed. interrupt_after: Nodes to Nodes to interrupt immediately after they get executed. feedback_keys: Feedback keys to assign to run. on_disconnect: The disconnect mode to use. Must be one of 'cancel' or 'continue'. on_completion: Whether to delete or keep the thread created for a stateless run. Must be one of 'delete' or 'keep'. webhook: Webhook to call after LangGraph API call is done. multitask_strategy: Multitask strategy to use. Must be one of 'reject', 'interrupt', 'rollback', or 'enqueue'. if_not_exists: How to handle missing thread. Defaults to 'reject'. Must be either 'reject' (raise error if missing), or 'create' (create new thread). after_seconds: The number of seconds to wait before starting the run. Use to schedule future runs. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. on_run_created: Callback when a run is created. durability: The durability to use for the run. Values are "sync", "async", or "exit". "async" means checkpoints are persisted async while next graph step executes, replaces checkpoint_during=True "sync" means checkpoints are persisted sync after graph step executes, replaces checkpoint_during=False "exit" means checkpoints are only persisted when the run exits, does not save intermediate steps Returns: Asynchronous iterator of stream results. ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024) async for chunk in client.runs.stream( thread_id=None, assistant_id="agent", input={"messages": [{"role": "user", "content": "how are you?"}]}, stream_mode=["values","debug"], metadata={"name":"my_run"}, context={"model_name": "anthropic"}, interrupt_before=["node_to_stop_before_1","node_to_stop_before_2"], interrupt_after=["node_to_stop_after_1","node_to_stop_after_2"], feedback_keys=["my_feedback_key_1","my_feedback_key_2"], webhook="https://my.fake.webhook.com", multitask_strategy="interrupt" ): print(chunk) ``` ```shell ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ StreamPart(event='metadata', data={'run_id': '1ef4a9b8-d7da-679a-a45a-872054341df2'}) StreamPart(event='values', data={'messages': [{'content': 'how are you?', 'additional_kwargs': {}, 'response_metadata': {}, 'type': 'human', 'name': None, 'id': 'fe0a5778-cfe9-42ee-b807-0adaa1873c10', 'example': False}]}) StreamPart(event='values', data={'messages': [{'content': 'how are you?', 'additional_kwargs': {}, 'response_metadata': {}, 'type': 'human', 'name': None, 'id': 'fe0a5778-cfe9-42ee-b807-0adaa1873c10', 'example': False}, {'content': "I'm doing well, thanks for asking! I'm an AI assistant created by Anthropic to be helpful, honest, and harmless.", 'additional_kwargs': {}, 'response_metadata': {}, 'type': 'ai', 'name': None, 'id': 'run-159b782c-b679-4830-83c6-cef87798fe8b', 'example': False, 'tool_calls': [], 'invalid_tool_calls': [], 'usage_metadata': None}]}) StreamPart(event='end', data=None) ``` """ if checkpoint_during is not None: warnings.warn( "`checkpoint_during` is deprecated and will be removed in a future version. Use `durability` instead.", DeprecationWarning, stacklevel=2, ) payload = { "input": input, "command": ( {k: v for k, v in command.items() if v is not None} if command else None ), "config": config, "context": context, "metadata": metadata, "stream_mode": stream_mode, "stream_subgraphs": stream_subgraphs, "stream_resumable": stream_resumable, "assistant_id": assistant_id, "interrupt_before": interrupt_before, "interrupt_after": interrupt_after, "feedback_keys": feedback_keys, "webhook": webhook, "checkpoint": checkpoint, "checkpoint_id": checkpoint_id, "checkpoint_during": checkpoint_during, "multitask_strategy": multitask_strategy, "if_not_exists": if_not_exists, "on_disconnect": on_disconnect, "on_completion": on_completion, "after_seconds": after_seconds, "durability": durability, } endpoint = ( f"/threads/{thread_id}/runs/stream" if thread_id is not None else "/runs/stream" ) def on_response(res: httpx.Response): """Callback function to handle the response.""" if on_run_created and (metadata := _get_run_metadata_from_response(res)): on_run_created(metadata) return self.http.stream( endpoint, "POST", json={k: v for k, v in payload.items() if v is not None}, params=params, headers=headers, on_response=on_response if on_run_created else None, ) @overload async def create( self, thread_id: None, assistant_id: str, *, input: Input | None = None, command: Command | None = None, stream_mode: StreamMode | Sequence[StreamMode] = "values", stream_subgraphs: bool = False, stream_resumable: bool = False, metadata: Mapping[str, Any] | None = None, checkpoint_during: bool | None = None, config: Config | None = None, context: Context | None = None, interrupt_before: All | Sequence[str] | None = None, interrupt_after: All | Sequence[str] | None = None, webhook: str | None = None, on_completion: OnCompletionBehavior | None = None, if_not_exists: IfNotExists | None = None, after_seconds: int | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, on_run_created: Callable[[RunCreateMetadata], None] | None = None, ) -> Run: ... @overload async def create( self, thread_id: str, assistant_id: str, *, input: Input | None = None, command: Command | None = None, stream_mode: StreamMode | Sequence[StreamMode] = "values", stream_subgraphs: bool = False, stream_resumable: bool = False, metadata: Mapping[str, Any] | None = None, config: Config | None = None, context: Context | None = None, checkpoint: Checkpoint | None = None, checkpoint_id: str | None = None, checkpoint_during: bool | None = None, interrupt_before: All | Sequence[str] | None = None, interrupt_after: All | Sequence[str] | None = None, webhook: str | None = None, multitask_strategy: MultitaskStrategy | None = None, if_not_exists: IfNotExists | None = None, after_seconds: int | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, on_run_created: Callable[[RunCreateMetadata], None] | None = None, ) -> Run: ... async def create( self, thread_id: str | None, assistant_id: str, *, input: Input | None = None, command: Command | None = None, stream_mode: StreamMode | Sequence[StreamMode] = "values", stream_subgraphs: bool = False, stream_resumable: bool = False, metadata: Mapping[str, Any] | None = None, config: Config | None = None, context: Context | None = None, checkpoint: Checkpoint | None = None, checkpoint_id: str | None = None, checkpoint_during: bool | None = None, # deprecated interrupt_before: All | Sequence[str] | None = None, interrupt_after: All | Sequence[str] | None = None, webhook: str | None = None, multitask_strategy: MultitaskStrategy | None = None, if_not_exists: IfNotExists | None = None, on_completion: OnCompletionBehavior | None = None, after_seconds: int | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, on_run_created: Callable[[RunCreateMetadata], None] | None = None, durability: Durability | None = None, ) -> Run: """Create a background run. Args: thread_id: the thread ID to assign to the thread. If `None` will create a stateless run. assistant_id: The assistant ID or graph name to stream from. If using graph name, will default to first assistant created from that graph. input: The input to the graph. command: A command to execute. Cannot be combined with input. stream_mode: The stream mode(s) to use. stream_subgraphs: Whether to stream output from subgraphs. stream_resumable: Whether the stream is considered resumable. If true, the stream can be resumed and replayed in its entirety even after disconnection. metadata: Metadata to assign to the run. config: The configuration for the assistant. context: Static context to add to the assistant. !!! version-added "Added in version 0.6.0" checkpoint: The checkpoint to resume from. checkpoint_during: (deprecated) Whether to checkpoint during the run (or only at the end/interruption). interrupt_before: Nodes to interrupt immediately before they get executed. interrupt_after: Nodes to Nodes to interrupt immediately after they get executed. webhook: Webhook to call after LangGraph API call is done. multitask_strategy: Multitask strategy to use. Must be one of 'reject', 'interrupt', 'rollback', or 'enqueue'. on_completion: Whether to delete or keep the thread created for a stateless run. Must be one of 'delete' or 'keep'. if_not_exists: How to handle missing thread. Defaults to 'reject'. Must be either 'reject' (raise error if missing), or 'create' (create new thread). after_seconds: The number of seconds to wait before starting the run. Use to schedule future runs. headers: Optional custom headers to include with the request. on_run_created: Optional callback to call when a run is created. durability: The durability to use for the run. Values are "sync", "async", or "exit". "async" means checkpoints are persisted async while next graph step executes, replaces checkpoint_during=True "sync" means checkpoints are persisted sync after graph step executes, replaces checkpoint_during=False "exit" means checkpoints are only persisted when the run exits, does not save intermediate steps Returns: The created background run. ???+ example "Example Usage" ```python background_run = await client.runs.create( thread_id="my_thread_id", assistant_id="my_assistant_id", input={"messages": [{"role": "user", "content": "hello!"}]}, metadata={"name":"my_run"}, context={"model_name": "openai"}, interrupt_before=["node_to_stop_before_1","node_to_stop_before_2"], interrupt_after=["node_to_stop_after_1","node_to_stop_after_2"], webhook="https://my.fake.webhook.com", multitask_strategy="interrupt" ) print(background_run) ``` ```shell -------------------------------------------------------------------------------- { 'run_id': 'my_run_id', 'thread_id': 'my_thread_id', 'assistant_id': 'my_assistant_id', 'created_at': '2024-07-25T15:35:42.598503+00:00', 'updated_at': '2024-07-25T15:35:42.598503+00:00', 'metadata': {}, 'status': 'pending', 'kwargs': { 'input': { 'messages': [ { 'role': 'user', 'content': 'how are you?' } ] }, 'config': { 'metadata': { 'created_by': 'system' }, 'configurable': { 'run_id': 'my_run_id', 'user_id': None, 'graph_id': 'agent', 'thread_id': 'my_thread_id', 'checkpoint_id': None, 'assistant_id': 'my_assistant_id' }, }, 'context': { 'model_name': 'openai' } 'webhook': "https://my.fake.webhook.com", 'temporary': False, 'stream_mode': ['values'], 'feedback_keys': None, 'interrupt_after': ["node_to_stop_after_1","node_to_stop_after_2"], 'interrupt_before': ["node_to_stop_before_1","node_to_stop_before_2"] }, 'multitask_strategy': 'interrupt' } ``` """ if checkpoint_during is not None: warnings.warn( "`checkpoint_during` is deprecated and will be removed in a future version. Use `durability` instead.", DeprecationWarning, stacklevel=2, ) payload = { "input": input, "command": ( {k: v for k, v in command.items() if v is not None} if command else None ), "stream_mode": stream_mode, "stream_subgraphs": stream_subgraphs, "stream_resumable": stream_resumable, "config": config, "context": context, "metadata": metadata, "assistant_id": assistant_id, "interrupt_before": interrupt_before, "interrupt_after": interrupt_after, "webhook": webhook, "checkpoint": checkpoint, "checkpoint_id": checkpoint_id, "checkpoint_during": checkpoint_during, "multitask_strategy": multitask_strategy, "if_not_exists": if_not_exists, "on_completion": on_completion, "after_seconds": after_seconds, "durability": durability, } payload = {k: v for k, v in payload.items() if v is not None} def on_response(res: httpx.Response): """Callback function to handle the response.""" if on_run_created and (metadata := _get_run_metadata_from_response(res)): on_run_created(metadata) return await self.http.post( f"/threads/{thread_id}/runs" if thread_id else "/runs", json=payload, params=params, headers=headers, on_response=on_response if on_run_created else None, ) async def create_batch( self, payloads: list[RunCreate], *, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> list[Run]: """Create a batch of stateless background runs.""" def filter_payload(payload: RunCreate): return {k: v for k, v in payload.items() if v is not None} filtered = [filter_payload(payload) for payload in payloads] return await self.http.post( "/runs/batch", json=filtered, headers=headers, params=params ) @overload async def wait( self, thread_id: str, assistant_id: str, *, input: Input | None = None, command: Command | None = None, metadata: Mapping[str, Any] | None = None, config: Config | None = None, context: Context | None = None, checkpoint: Checkpoint | None = None, checkpoint_id: str | None = None, checkpoint_during: bool | None = None, interrupt_before: All | Sequence[str] | None = None, interrupt_after: All | Sequence[str] | None = None, webhook: str | None = None, on_disconnect: DisconnectMode | None = None, multitask_strategy: MultitaskStrategy | None = None, if_not_exists: IfNotExists | None = None, after_seconds: int | None = None, raise_error: bool = True, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, on_run_created: Callable[[RunCreateMetadata], None] | None = None, ) -> list[dict] | dict[str, Any]: ... @overload async def wait( self, thread_id: None, assistant_id: str, *, input: Input | None = None, command: Command | None = None, metadata: Mapping[str, Any] | None = None, config: Config | None = None, context: Context | None = None, checkpoint_during: bool | None = None, interrupt_before: All | Sequence[str] | None = None, interrupt_after: All | Sequence[str] | None = None, webhook: str | None = None, on_disconnect: DisconnectMode | None = None, on_completion: OnCompletionBehavior | None = None, if_not_exists: IfNotExists | None = None, after_seconds: int | None = None, raise_error: bool = True, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, on_run_created: Callable[[RunCreateMetadata], None] | None = None, ) -> list[dict] | dict[str, Any]: ... async def wait( self, thread_id: str | None, assistant_id: str, *, input: Input | None = None, command: Command | None = None, metadata: Mapping[str, Any] | None = None, config: Config | None = None, context: Context | None = None, checkpoint: Checkpoint | None = None, checkpoint_id: str | None = None, checkpoint_during: bool | None = None, # deprecated interrupt_before: All | Sequence[str] | None = None, interrupt_after: All | Sequence[str] | None = None, webhook: str | None = None, on_disconnect: DisconnectMode | None = None, on_completion: OnCompletionBehavior | None = None, multitask_strategy: MultitaskStrategy | None = None, if_not_exists: IfNotExists | None = None, after_seconds: int | None = None, raise_error: bool = True, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, on_run_created: Callable[[RunCreateMetadata], None] | None = None, durability: Durability | None = None, ) -> list[dict] | dict[str, Any]: """Create a run, wait until it finishes and return the final state. Args: thread_id: the thread ID to create the run on. If `None` will create a stateless run. assistant_id: The assistant ID or graph name to run. If using graph name, will default to first assistant created from that graph. input: The input to the graph. command: A command to execute. Cannot be combined with input. metadata: Metadata to assign to the run. config: The configuration for the assistant. context: Static context to add to the assistant. !!! version-added "Added in version 0.6.0" checkpoint: The checkpoint to resume from. checkpoint_during: (deprecated) Whether to checkpoint during the run (or only at the end/interruption). interrupt_before: Nodes to interrupt immediately before they get executed. interrupt_after: Nodes to Nodes to interrupt immediately after they get executed. webhook: Webhook to call after LangGraph API call is done. on_disconnect: The disconnect mode to use. Must be one of 'cancel' or 'continue'. on_completion: Whether to delete or keep the thread created for a stateless run. Must be one of 'delete' or 'keep'. multitask_strategy: Multitask strategy to use. Must be one of 'reject', 'interrupt', 'rollback', or 'enqueue'. if_not_exists: How to handle missing thread. Defaults to 'reject'. Must be either 'reject' (raise error if missing), or 'create' (create new thread). after_seconds: The number of seconds to wait before starting the run. Use to schedule future runs. headers: Optional custom headers to include with the request. on_run_created: Optional callback to call when a run is created. durability: The durability to use for the run. Values are "sync", "async", or "exit". "async" means checkpoints are persisted async while next graph step executes, replaces checkpoint_during=True "sync" means checkpoints are persisted sync after graph step executes, replaces checkpoint_during=False "exit" means checkpoints are only persisted when the run exits, does not save intermediate steps Returns: The output of the run. ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024") final_state_of_run = await client.runs.wait( thread_id=None, assistant_id="agent", input={"messages": [{"role": "user", "content": "how are you?"}]}, metadata={"name":"my_run"}, context={"model_name": "anthropic"}, interrupt_before=["node_to_stop_before_1","node_to_stop_before_2"], interrupt_after=["node_to_stop_after_1","node_to_stop_after_2"], webhook="https://my.fake.webhook.com", multitask_strategy="interrupt" ) print(final_state_of_run) ``` ```shell ------------------------------------------------------------------------------------------------------------------------------------------- { 'messages': [ { 'content': 'how are you?', 'additional_kwargs': {}, 'response_metadata': {}, 'type': 'human', 'name': None, 'id': 'f51a862c-62fe-4866-863b-b0863e8ad78a', 'example': False }, { 'content': "I'm doing well, thanks for asking! I'm an AI assistant created by Anthropic to be helpful, honest, and harmless.", 'additional_kwargs': {}, 'response_metadata': {}, 'type': 'ai', 'name': None, 'id': 'run-bf1cd3c6-768f-4c16-b62d-ba6f17ad8b36', 'example': False, 'tool_calls': [], 'invalid_tool_calls': [], 'usage_metadata': None } ] } ``` """ if checkpoint_during is not None: warnings.warn( "`checkpoint_during` is deprecated and will be removed in a future version. Use `durability` instead.", DeprecationWarning, stacklevel=2, ) payload = { "input": input, "command": ( {k: v for k, v in command.items() if v is not None} if command else None ), "config": config, "context": context, "metadata": metadata, "assistant_id": assistant_id, "interrupt_before": interrupt_before, "interrupt_after": interrupt_after, "webhook": webhook, "checkpoint": checkpoint, "checkpoint_id": checkpoint_id, "multitask_strategy": multitask_strategy, "checkpoint_during": checkpoint_during, "if_not_exists": if_not_exists, "on_disconnect": on_disconnect, "on_completion": on_completion, "after_seconds": after_seconds, "durability": durability, } endpoint = ( f"/threads/{thread_id}/runs/wait" if thread_id is not None else "/runs/wait" ) def on_response(res: httpx.Response): """Callback function to handle the response.""" if on_run_created and (metadata := _get_run_metadata_from_response(res)): on_run_created(metadata) response = await self.http.request_reconnect( endpoint, "POST", json={k: v for k, v in payload.items() if v is not None}, params=params, headers=headers, on_response=on_response if on_run_created else None, ) if ( raise_error and isinstance(response, dict) and "__error__" in response and isinstance(response["__error__"], dict) ): raise Exception( f"{response['__error__'].get('error')}: {response['__error__'].get('message')}" ) return response async def list( self, thread_id: str, *, limit: int = 10, offset: int = 0, status: RunStatus | None = None, select: list[RunSelectField] | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> list[Run]: """List runs. Args: thread_id: The thread ID to list runs for. limit: The maximum number of results to return. offset: The number of results to skip. status: The status of the run to filter by. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: The runs for the thread. ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024") await client.runs.list( thread_id="thread_id", limit=5, offset=5, ) ``` """ query_params: dict[str, Any] = { "limit": limit, "offset": offset, } if status is not None: query_params["status"] = status if select: query_params["select"] = select if params: query_params.update(params) return await self.http.get( f"/threads/{thread_id}/runs", params=query_params, headers=headers ) async def get( self, thread_id: str, run_id: str, *, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> Run: """Get a run. Args: thread_id: The thread ID to get. run_id: The run ID to get. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: `Run` object. ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024") run = await client.runs.get( thread_id="thread_id_to_delete", run_id="run_id_to_delete", ) ``` """ return await self.http.get( f"/threads/{thread_id}/runs/{run_id}", headers=headers, params=params ) async def cancel( self, thread_id: str, run_id: str, *, wait: bool = False, action: CancelAction = "interrupt", headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> None: """Get a run. Args: thread_id: The thread ID to cancel. run_id: The run ID to cancel. wait: Whether to wait until run has completed. action: Action to take when cancelling the run. Possible values are `interrupt` or `rollback`. Default is `interrupt`. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: `None` ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024") await client.runs.cancel( thread_id="thread_id_to_cancel", run_id="run_id_to_cancel", wait=True, action="interrupt" ) ``` """ query_params = { "wait": 1 if wait else 0, "action": action, } if params: query_params.update(params) if wait: return await self.http.request_reconnect( f"/threads/{thread_id}/runs/{run_id}/cancel", "POST", params=query_params, headers=headers, ) else: return await self.http.post( f"/threads/{thread_id}/runs/{run_id}/cancel", json=None, params=query_params, headers=headers, ) async def join( self, thread_id: str, run_id: str, *, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> dict: """Block until a run is done. Returns the final state of the thread. Args: thread_id: The thread ID to join. run_id: The run ID to join. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: `None` ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024") result =await client.runs.join( thread_id="thread_id_to_join", run_id="run_id_to_join" ) ``` """ return await self.http.request_reconnect( f"/threads/{thread_id}/runs/{run_id}/join", "GET", headers=headers, params=params, ) def join_stream( self, thread_id: str, run_id: str, *, cancel_on_disconnect: bool = False, stream_mode: StreamMode | Sequence[StreamMode] | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, last_event_id: str | None = None, ) -> AsyncIterator[StreamPart]: """Stream output from a run in real-time, until the run is done. Output is not buffered, so any output produced before this call will not be received here. Args: thread_id: The thread ID to join. run_id: The run ID to join. cancel_on_disconnect: Whether to cancel the run when the stream is disconnected. stream_mode: The stream mode(s) to use. Must be a subset of the stream modes passed when creating the run. Background runs default to having the union of all stream modes. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. last_event_id: The last event ID to use for the stream. Returns: The stream of parts. ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024") async for part in client.runs.join_stream( thread_id="thread_id_to_join", run_id="run_id_to_join", stream_mode=["values", "debug"] ): print(part) ``` """ query_params = { "cancel_on_disconnect": cancel_on_disconnect, "stream_mode": stream_mode, } if params: query_params.update(params) return self.http.stream( f"/threads/{thread_id}/runs/{run_id}/stream", "GET", params=query_params, headers={ **({"Last-Event-ID": last_event_id} if last_event_id else {}), **(headers or {}), } or None, ) async def delete( self, thread_id: str, run_id: str, *, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> None: """Delete a run. Args: thread_id: The thread ID to delete. run_id: The run ID to delete. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: `None` ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024") await client.runs.delete( thread_id="thread_id_to_delete", run_id="run_id_to_delete" ) ``` """ await self.http.delete( f"/threads/{thread_id}/runs/{run_id}", headers=headers, params=params ) class CronClient: """Client for managing recurrent runs (cron jobs) in LangGraph. A run is a single invocation of an assistant with optional input, config, and context. This client allows scheduling recurring runs to occur automatically. ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024")) cron_job = await client.crons.create_for_thread( thread_id="thread_123", assistant_id="asst_456", schedule="0 9 * * *", input={"message": "Daily update"} ) ``` !!! note "Feature Availability" The crons client functionality is not supported on all licenses. Please check the relevant license documentation for the most up-to-date details on feature availability. """ def __init__(self, http_client: HttpClient) -> None: self.http = http_client async def create_for_thread( self, thread_id: str, assistant_id: str, *, schedule: str, input: Input | None = None, metadata: Mapping[str, Any] | None = None, config: Config | None = None, context: Context | None = None, checkpoint_during: bool | None = None, interrupt_before: All | list[str] | None = None, interrupt_after: All | list[str] | None = None, webhook: str | None = None, multitask_strategy: str | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> Run: """Create a cron job for a thread. Args: thread_id: the thread ID to run the cron job on. assistant_id: The assistant ID or graph name to use for the cron job. If using graph name, will default to first assistant created from that graph. schedule: The cron schedule to execute this job on. input: The input to the graph. metadata: Metadata to assign to the cron job runs. config: The configuration for the assistant. context: Static context to add to the assistant. !!! version-added "Added in version 0.6.0" checkpoint_during: Whether to checkpoint during the run (or only at the end/interruption). interrupt_before: Nodes to interrupt immediately before they get executed. interrupt_after: Nodes to Nodes to interrupt immediately after they get executed. webhook: Webhook to call after LangGraph API call is done. multitask_strategy: Multitask strategy to use. Must be one of 'reject', 'interrupt', 'rollback', or 'enqueue'. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: The cron run. ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024") cron_run = await client.crons.create_for_thread( thread_id="my-thread-id", assistant_id="agent", schedule="27 15 * * *", input={"messages": [{"role": "user", "content": "hello!"}]}, metadata={"name":"my_run"}, context={"model_name": "openai"}, interrupt_before=["node_to_stop_before_1","node_to_stop_before_2"], interrupt_after=["node_to_stop_after_1","node_to_stop_after_2"], webhook="https://my.fake.webhook.com", multitask_strategy="interrupt" ) ``` """ payload = { "schedule": schedule, "input": input, "config": config, "metadata": metadata, "context": context, "assistant_id": assistant_id, "checkpoint_during": checkpoint_during, "interrupt_before": interrupt_before, "interrupt_after": interrupt_after, "webhook": webhook, } if multitask_strategy: payload["multitask_strategy"] = multitask_strategy payload = {k: v for k, v in payload.items() if v is not None} return await self.http.post( f"/threads/{thread_id}/runs/crons", json=payload, headers=headers, params=params, ) async def create( self, assistant_id: str, *, schedule: str, input: Input | None = None, metadata: Mapping[str, Any] | None = None, config: Config | None = None, context: Context | None = None, checkpoint_during: bool | None = None, interrupt_before: All | list[str] | None = None, interrupt_after: All | list[str] | None = None, webhook: str | None = None, multitask_strategy: str | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> Run: """Create a cron run. Args: assistant_id: The assistant ID or graph name to use for the cron job. If using graph name, will default to first assistant created from that graph. schedule: The cron schedule to execute this job on. input: The input to the graph. metadata: Metadata to assign to the cron job runs. config: The configuration for the assistant. context: Static context to add to the assistant. !!! version-added "Added in version 0.6.0" checkpoint_during: Whether to checkpoint during the run (or only at the end/interruption). interrupt_before: Nodes to interrupt immediately before they get executed. interrupt_after: Nodes to Nodes to interrupt immediately after they get executed. webhook: Webhook to call after LangGraph API call is done. multitask_strategy: Multitask strategy to use. Must be one of 'reject', 'interrupt', 'rollback', or 'enqueue'. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: The cron run. ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024") cron_run = client.crons.create( assistant_id="agent", schedule="27 15 * * *", input={"messages": [{"role": "user", "content": "hello!"}]}, metadata={"name":"my_run"}, context={"model_name": "openai"}, interrupt_before=["node_to_stop_before_1","node_to_stop_before_2"], interrupt_after=["node_to_stop_after_1","node_to_stop_after_2"], webhook="https://my.fake.webhook.com", multitask_strategy="interrupt" ) ``` """ payload = { "schedule": schedule, "input": input, "config": config, "metadata": metadata, "context": context, "assistant_id": assistant_id, "checkpoint_during": checkpoint_during, "interrupt_before": interrupt_before, "interrupt_after": interrupt_after, "webhook": webhook, } if multitask_strategy: payload["multitask_strategy"] = multitask_strategy payload = {k: v for k, v in payload.items() if v is not None} return await self.http.post( "/runs/crons", json=payload, headers=headers, params=params ) async def delete( self, cron_id: str, *, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> None: """Delete a cron. Args: cron_id: The cron ID to delete. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: `None` ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024") await client.crons.delete( cron_id="cron_to_delete" ) ``` """ await self.http.delete(f"/runs/crons/{cron_id}", headers=headers, params=params) async def search( self, *, assistant_id: str | None = None, thread_id: str | None = None, limit: int = 10, offset: int = 0, sort_by: CronSortBy | None = None, sort_order: SortOrder | None = None, select: list[CronSelectField] | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> list[Cron]: """Get a list of cron jobs. Args: assistant_id: The assistant ID or graph name to search for. thread_id: the thread ID to search for. limit: The maximum number of results to return. offset: The number of results to skip. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: The list of cron jobs returned by the search, ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024") cron_jobs = await client.crons.search( assistant_id="my_assistant_id", thread_id="my_thread_id", limit=5, offset=5, ) print(cron_jobs) ``` ```shell ---------------------------------------------------------- [ { 'cron_id': '1ef3cefa-4c09-6926-96d0-3dc97fd5e39b', 'assistant_id': 'my_assistant_id', 'thread_id': 'my_thread_id', 'user_id': None, 'payload': { 'input': {'start_time': ''}, 'schedule': '4 * * * *', 'assistant_id': 'my_assistant_id' }, 'schedule': '4 * * * *', 'next_run_date': '2024-07-25T17:04:00+00:00', 'end_time': None, 'created_at': '2024-07-08T06:02:23.073257+00:00', 'updated_at': '2024-07-08T06:02:23.073257+00:00' } ] ``` """ payload = { "assistant_id": assistant_id, "thread_id": thread_id, "limit": limit, "offset": offset, } if sort_by: payload["sort_by"] = sort_by if sort_order: payload["sort_order"] = sort_order if select: payload["select"] = select payload = {k: v for k, v in payload.items() if v is not None} return await self.http.post( "/runs/crons/search", json=payload, headers=headers, params=params ) async def count( self, *, assistant_id: str | None = None, thread_id: str | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> int: """Count cron jobs matching filters. Args: assistant_id: Assistant ID to filter by. thread_id: Thread ID to filter by. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: int: Number of crons matching the criteria. """ payload: dict[str, Any] = {} if assistant_id: payload["assistant_id"] = assistant_id if thread_id: payload["thread_id"] = thread_id return await self.http.post( "/runs/crons/count", json=payload, headers=headers, params=params ) class StoreClient: """Client for interacting with the graph's shared storage. The Store provides a key-value storage system for persisting data across graph executions, allowing for stateful operations and data sharing across threads. ???+ example "Example" ```python client = get_client(url="http://localhost:2024") await client.store.put_item(["users", "user123"], "mem-123451342", {"name": "Alice", "score": 100}) ``` """ def __init__(self, http: HttpClient) -> None: self.http = http async def put_item( self, namespace: Sequence[str], /, key: str, value: Mapping[str, Any], index: Literal[False] | list[str] | None = None, ttl: int | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> None: """Store or update an item. Args: namespace: A list of strings representing the namespace path. key: The unique identifier for the item within the namespace. value: A dictionary containing the item's data. index: Controls search indexing - None (use defaults), False (disable), or list of field paths to index. ttl: Optional time-to-live in minutes for the item, or None for no expiration. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: `None` ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024") await client.store.put_item( ["documents", "user123"], key="item456", value={"title": "My Document", "content": "Hello World"} ) ``` """ for label in namespace: if "." in label: raise ValueError( f"Invalid namespace label '{label}'. Namespace labels cannot contain periods ('.')." ) payload = { "namespace": namespace, "key": key, "value": value, "index": index, "ttl": ttl, } await self.http.put( "/store/items", json=_provided_vals(payload), headers=headers, params=params ) async def get_item( self, namespace: Sequence[str], /, key: str, *, refresh_ttl: bool | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> Item: """Retrieve a single item. Args: key: The unique identifier for the item. namespace: Optional list of strings representing the namespace path. refresh_ttl: Whether to refresh the TTL on this read operation. If `None`, uses the store's default behavior. Returns: Item: The retrieved item. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024") item = await client.store.get_item( ["documents", "user123"], key="item456", ) print(item) ``` ```shell ---------------------------------------------------------------- { 'namespace': ['documents', 'user123'], 'key': 'item456', 'value': {'title': 'My Document', 'content': 'Hello World'}, 'created_at': '2024-07-30T12:00:00Z', 'updated_at': '2024-07-30T12:00:00Z' } ``` """ for label in namespace: if "." in label: raise ValueError( f"Invalid namespace label '{label}'. Namespace labels cannot contain periods ('.')." ) get_params = {"namespace": ".".join(namespace), "key": key} if refresh_ttl is not None: get_params["refresh_ttl"] = refresh_ttl if params: get_params = {**get_params, **params} return await self.http.get("/store/items", params=get_params, headers=headers) async def delete_item( self, namespace: Sequence[str], /, key: str, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> None: """Delete an item. Args: key: The unique identifier for the item. namespace: Optional list of strings representing the namespace path. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: `None` ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024") await client.store.delete_item( ["documents", "user123"], key="item456", ) ``` """ await self.http.delete( "/store/items", json={"namespace": namespace, "key": key}, headers=headers, params=params, ) async def search_items( self, namespace_prefix: Sequence[str], /, filter: Mapping[str, Any] | None = None, limit: int = 10, offset: int = 0, query: str | None = None, refresh_ttl: bool | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> SearchItemsResponse: """Search for items within a namespace prefix. Args: namespace_prefix: List of strings representing the namespace prefix. filter: Optional dictionary of key-value pairs to filter results. limit: Maximum number of items to return (default is 10). offset: Number of items to skip before returning results (default is 0). query: Optional query for natural language search. refresh_ttl: Whether to refresh the TTL on items returned by this search. If `None`, uses the store's default behavior. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: A list of items matching the search criteria. ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024") items = await client.store.search_items( ["documents"], filter={"author": "John Doe"}, limit=5, offset=0 ) print(items) ``` ```shell ---------------------------------------------------------------- { "items": [ { "namespace": ["documents", "user123"], "key": "item789", "value": { "title": "Another Document", "author": "John Doe" }, "created_at": "2024-07-30T12:00:00Z", "updated_at": "2024-07-30T12:00:00Z" }, # ... additional items ... ] } ``` """ payload = { "namespace_prefix": namespace_prefix, "filter": filter, "limit": limit, "offset": offset, "query": query, "refresh_ttl": refresh_ttl, } return await self.http.post( "/store/items/search", json=_provided_vals(payload), headers=headers, params=params, ) async def list_namespaces( self, prefix: list[str] | None = None, suffix: list[str] | None = None, max_depth: int | None = None, limit: int = 100, offset: int = 0, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> ListNamespaceResponse: """List namespaces with optional match conditions. Args: prefix: Optional list of strings representing the prefix to filter namespaces. suffix: Optional list of strings representing the suffix to filter namespaces. max_depth: Optional integer specifying the maximum depth of namespaces to return. limit: Maximum number of namespaces to return (default is 100). offset: Number of namespaces to skip before returning results (default is 0). headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: A list of namespaces matching the criteria. ???+ example "Example Usage" ```python client = get_client(url="http://localhost:2024") namespaces = await client.store.list_namespaces( prefix=["documents"], max_depth=3, limit=10, offset=0 ) print(namespaces) ---------------------------------------------------------------- [ ["documents", "user123", "reports"], ["documents", "user456", "invoices"], ... ] ``` """ payload = { "prefix": prefix, "suffix": suffix, "max_depth": max_depth, "limit": limit, "offset": offset, } return await self.http.post( "/store/namespaces", json=_provided_vals(payload), headers=headers, params=params, ) def get_sync_client( *, url: str | None = None, api_key: str | None = NOT_PROVIDED, headers: Mapping[str, str] | None = None, timeout: TimeoutTypes | None = None, ) -> SyncLangGraphClient: """Get a synchronous LangGraphClient instance. Args: url: The URL of the LangGraph API. api_key: API key for authentication. Can be: - A string: use this exact API key - `None`: explicitly skip loading from environment variables - Not provided (default): auto-load from environment in this order: 1. `LANGGRAPH_API_KEY` 2. `LANGSMITH_API_KEY` 3. `LANGCHAIN_API_KEY` headers: Optional custom headers timeout: Optional timeout configuration for the HTTP client. Accepts an httpx.Timeout instance, a float (seconds), or a tuple of timeouts. Tuple format is (connect, read, write, pool) If not provided, defaults to connect=5s, read=300s, write=300s, and pool=5s. Returns: SyncLangGraphClient: The top-level synchronous client for accessing AssistantsClient, ThreadsClient, RunsClient, and CronClient. ???+ example "Example" ```python from langgraph_sdk import get_sync_client # get top-level synchronous LangGraphClient client = get_sync_client(url="http://localhost:8123") # example usage: client..() assistant = client.assistants.get(assistant_id="some_uuid") ``` ???+ example "Skip auto-loading API key from environment:" ```python from langgraph_sdk import get_sync_client # Don't load API key from environment variables client = get_sync_client( url="http://localhost:8123", api_key=None ) ``` """ if url is None: url = "http://localhost:8123" transport = httpx.HTTPTransport(retries=5) client = httpx.Client( base_url=url, transport=transport, timeout=( httpx.Timeout(timeout) # ty: ignore[invalid-argument-type] if timeout is not None else httpx.Timeout(connect=5, read=300, write=300, pool=5) ), headers=_get_headers(api_key, headers), ) return SyncLangGraphClient(client) class SyncLangGraphClient: """Synchronous client for interacting with the LangGraph API. This class provides synchronous access to LangGraph API endpoints for managing assistants, threads, runs, cron jobs, and data storage. ???+ example "Example" ```python client = get_sync_client(url="http://localhost:2024") assistant = client.assistants.get("asst_123") ``` """ def __init__(self, client: httpx.Client) -> None: self.http = SyncHttpClient(client) self.assistants = SyncAssistantsClient(self.http) self.threads = SyncThreadsClient(self.http) self.runs = SyncRunsClient(self.http) self.crons = SyncCronClient(self.http) self.store = SyncStoreClient(self.http) def __enter__(self) -> SyncLangGraphClient: """Enter the sync context manager.""" return self def __exit__( self, exc_type: type[BaseException] | None, exc_val: BaseException | None, exc_tb: TracebackType | None, ) -> None: """Exit the sync context manager.""" self.close() def close(self) -> None: """Close the underlying HTTP client.""" if hasattr(self, "http"): self.http.client.close() class SyncHttpClient: """Handle synchronous requests to the LangGraph API. Provides error messaging and content handling enhancements above the underlying httpx client, mirroring the interface of [HttpClient](#HttpClient) but for sync usage. Attributes: client (httpx.Client): Underlying HTTPX sync client. """ def __init__(self, client: httpx.Client) -> None: self.client = client def get( self, path: str, *, params: QueryParamTypes | None = None, headers: Mapping[str, str] | None = None, on_response: Callable[[httpx.Response], None] | None = None, ) -> Any: """Send a `GET` request.""" r = self.client.get(path, params=params, headers=headers) if on_response: on_response(r) _raise_for_status_typed(r) return _decode_json(r) def post( self, path: str, *, json: dict[str, Any] | list | None, params: QueryParamTypes | None = None, headers: Mapping[str, str] | None = None, on_response: Callable[[httpx.Response], None] | None = None, ) -> Any: """Send a `POST` request.""" if json is not None: request_headers, content = _encode_json(json) else: request_headers, content = {}, b"" if headers: request_headers.update(headers) r = self.client.post( path, headers=request_headers, content=content, params=params ) if on_response: on_response(r) _raise_for_status_typed(r) return _decode_json(r) def put( self, path: str, *, json: dict, params: QueryParamTypes | None = None, headers: Mapping[str, str] | None = None, on_response: Callable[[httpx.Response], None] | None = None, ) -> Any: """Send a `PUT` request.""" request_headers, content = _encode_json(json) if headers: request_headers.update(headers) r = self.client.put( path, headers=request_headers, content=content, params=params ) if on_response: on_response(r) _raise_for_status_typed(r) return _decode_json(r) def patch( self, path: str, *, json: dict, params: QueryParamTypes | None = None, headers: Mapping[str, str] | None = None, on_response: Callable[[httpx.Response], None] | None = None, ) -> Any: """Send a `PATCH` request.""" request_headers, content = _encode_json(json) if headers: request_headers.update(headers) r = self.client.patch( path, headers=request_headers, content=content, params=params ) if on_response: on_response(r) _raise_for_status_typed(r) return _decode_json(r) def delete( self, path: str, *, json: Any | None = None, params: QueryParamTypes | None = None, headers: Mapping[str, str] | None = None, on_response: Callable[[httpx.Response], None] | None = None, ) -> None: """Send a `DELETE` request.""" r = self.client.request( "DELETE", path, json=json, params=params, headers=headers ) if on_response: on_response(r) _raise_for_status_typed(r) def request_reconnect( self, path: str, method: str, *, json: dict[str, Any] | None = None, params: QueryParamTypes | None = None, headers: Mapping[str, str] | None = None, on_response: Callable[[httpx.Response], None] | None = None, reconnect_limit: int = 5, ) -> Any: """Send a request that automatically reconnects to Location header.""" request_headers, content = _encode_json(json) if headers: request_headers.update(headers) with self.client.stream( method, path, headers=request_headers, content=content, params=params ) as r: if on_response: on_response(r) try: r.raise_for_status() except httpx.HTTPStatusError as e: body = r.read().decode() if sys.version_info >= (3, 11): e.add_note(body) else: logger.error(f"Error from langgraph-api: {body}", exc_info=e) raise e loc = r.headers.get("location") if reconnect_limit <= 0 or not loc: return _decode_json(r) try: return _decode_json(r) except httpx.HTTPError: warnings.warn( f"Request failed, attempting reconnect to Location: {loc}", stacklevel=2, ) r.close() return self.request_reconnect( loc, "GET", headers=request_headers, # don't pass on_response so it's only called once reconnect_limit=reconnect_limit - 1, ) def stream( self, path: str, method: str, *, json: dict[str, Any] | None = None, params: QueryParamTypes | None = None, headers: Mapping[str, str] | None = None, on_response: Callable[[httpx.Response], None] | None = None, ) -> Iterator[StreamPart]: """Stream the results of a request using SSE.""" if json is not None: request_headers, content = _encode_json(json) else: request_headers, content = {}, None request_headers["Accept"] = "text/event-stream" request_headers["Cache-Control"] = "no-store" if headers: request_headers.update(headers) reconnect_headers = { key: value for key, value in request_headers.items() if key.lower() not in {"content-length", "content-type"} } last_event_id: str | None = None reconnect_path: str | None = None reconnect_attempts = 0 max_reconnect_attempts = 5 while True: current_headers = dict( request_headers if reconnect_path is None else reconnect_headers ) if last_event_id is not None: current_headers["Last-Event-ID"] = last_event_id current_method = method if reconnect_path is None else "GET" current_content = content if reconnect_path is None else None current_params = params if reconnect_path is None else None retry = False with self.client.stream( current_method, reconnect_path or path, headers=current_headers, content=current_content, params=current_params, ) as res: if reconnect_path is None and on_response: on_response(res) # check status _raise_for_status_typed(res) # check content type content_type = res.headers.get("content-type", "").partition(";")[0] if "text/event-stream" not in content_type: raise httpx.TransportError( "Expected response header Content-Type to contain 'text/event-stream', " f"got {content_type!r}" ) reconnect_location = res.headers.get("location") if reconnect_location: reconnect_path = reconnect_location decoder = SSEDecoder() try: for line in iter_lines_raw(res): sse = decoder.decode(cast(bytes, line).rstrip(b"\n")) if sse is not None: if decoder.last_event_id is not None: last_event_id = decoder.last_event_id if sse.event or sse.data is not None: yield sse except httpx.HTTPError: # httpx.TransportError inherits from HTTPError, so transient # disconnects during streaming land here. if reconnect_path is None: raise retry = True else: if sse := decoder.decode(b""): if decoder.last_event_id is not None: last_event_id = decoder.last_event_id if sse.event or sse.data is not None: # See async stream implementation for rationale on # skipping empty flush events. yield sse if retry: reconnect_attempts += 1 if reconnect_attempts > max_reconnect_attempts: raise httpx.TransportError( "Exceeded maximum SSE reconnection attempts" ) continue break def _encode_json(json: Any) -> tuple[dict[str, str], bytes]: body = orjson.dumps( json, _orjson_default, orjson.OPT_SERIALIZE_NUMPY | orjson.OPT_NON_STR_KEYS, ) content_length = str(len(body)) content_type = "application/json" headers = {"Content-Length": content_length, "Content-Type": content_type} return headers, body def _decode_json(r: httpx.Response) -> Any: body = r.read() return orjson.loads(body) if body else None class SyncAssistantsClient: """Client for managing assistants in LangGraph synchronously. This class provides methods to interact with assistants, which are versioned configurations of your graph. ???+ example "Example" ```python client = get_sync_client(url="http://localhost:2024") assistant = client.assistants.get("assistant_id_123") ``` """ def __init__(self, http: SyncHttpClient) -> None: self.http = http def get( self, assistant_id: str, *, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> Assistant: """Get an assistant by ID. Args: assistant_id: The ID of the assistant to get OR the name of the graph (to use the default assistant). headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: `Assistant` Object. ???+ example "Example Usage" ```python assistant = client.assistants.get( assistant_id="my_assistant_id" ) print(assistant) ``` ```shell ---------------------------------------------------- { 'assistant_id': 'my_assistant_id', 'graph_id': 'agent', 'created_at': '2024-06-25T17:10:33.109781+00:00', 'updated_at': '2024-06-25T17:10:33.109781+00:00', 'config': {}, 'context': {}, 'metadata': {'created_by': 'system'} } ``` """ return self.http.get( f"/assistants/{assistant_id}", headers=headers, params=params ) def get_graph( self, assistant_id: str, *, xray: int | bool = False, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> dict[str, list[dict[str, Any]]]: """Get the graph of an assistant by ID. Args: assistant_id: The ID of the assistant to get the graph of. xray: Include graph representation of subgraphs. If an integer value is provided, only subgraphs with a depth less than or equal to the value will be included. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: The graph information for the assistant in JSON format. ???+ example "Example Usage" ```python client = get_sync_client(url="http://localhost:2024") graph_info = client.assistants.get_graph( assistant_id="my_assistant_id" ) print(graph_info) -------------------------------------------------------------------------------------------------------------------------- { 'nodes': [ {'id': '__start__', 'type': 'schema', 'data': '__start__'}, {'id': '__end__', 'type': 'schema', 'data': '__end__'}, {'id': 'agent','type': 'runnable','data': {'id': ['langgraph', 'utils', 'RunnableCallable'],'name': 'agent'}}, ], 'edges': [ {'source': '__start__', 'target': 'agent'}, {'source': 'agent','target': '__end__'} ] } ``` """ query_params = {"xray": xray} if params: query_params.update(params) return self.http.get( f"/assistants/{assistant_id}/graph", params=query_params, headers=headers ) def get_schemas( self, assistant_id: str, *, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> GraphSchema: """Get the schemas of an assistant by ID. Args: assistant_id: The ID of the assistant to get the schema of. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: GraphSchema: The graph schema for the assistant. ???+ example "Example Usage" ```python client = get_sync_client(url="http://localhost:2024") schema = client.assistants.get_schemas( assistant_id="my_assistant_id" ) print(schema) ``` ```shell ---------------------------------------------------------------------------------------------------------------------------- { 'graph_id': 'agent', 'state_schema': { 'title': 'LangGraphInput', '$ref': '#/definitions/AgentState', 'definitions': { 'BaseMessage': { 'title': 'BaseMessage', 'description': 'Base abstract Message class. Messages are the inputs and outputs of ChatModels.', 'type': 'object', 'properties': { 'content': { 'title': 'Content', 'anyOf': [ {'type': 'string'}, {'type': 'array','items': {'anyOf': [{'type': 'string'}, {'type': 'object'}]}} ] }, 'additional_kwargs': { 'title': 'Additional Kwargs', 'type': 'object' }, 'response_metadata': { 'title': 'Response Metadata', 'type': 'object' }, 'type': { 'title': 'Type', 'type': 'string' }, 'name': { 'title': 'Name', 'type': 'string' }, 'id': { 'title': 'Id', 'type': 'string' } }, 'required': ['content', 'type'] }, 'AgentState': { 'title': 'AgentState', 'type': 'object', 'properties': { 'messages': { 'title': 'Messages', 'type': 'array', 'items': {'$ref': '#/definitions/BaseMessage'} } }, 'required': ['messages'] } } }, 'config_schema': { 'title': 'Configurable', 'type': 'object', 'properties': { 'model_name': { 'title': 'Model Name', 'enum': ['anthropic', 'openai'], 'type': 'string' } } }, 'context_schema': { 'title': 'Context', 'type': 'object', 'properties': { 'model_name': { 'title': 'Model Name', 'enum': ['anthropic', 'openai'], 'type': 'string' } } } } ``` """ return self.http.get( f"/assistants/{assistant_id}/schemas", headers=headers, params=params ) def get_subgraphs( self, assistant_id: str, namespace: str | None = None, recurse: bool = False, *, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> Subgraphs: """Get the schemas of an assistant by ID. Args: assistant_id: The ID of the assistant to get the schema of. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: Subgraphs: The graph schema for the assistant. """ get_params = {"recurse": recurse} if params: get_params = {**get_params, **params} if namespace is not None: return self.http.get( f"/assistants/{assistant_id}/subgraphs/{namespace}", params=get_params, headers=headers, ) else: return self.http.get( f"/assistants/{assistant_id}/subgraphs", params=get_params, headers=headers, ) def create( self, graph_id: str | None, config: Config | None = None, *, context: Context | None = None, metadata: Json = None, assistant_id: str | None = None, if_exists: OnConflictBehavior | None = None, name: str | None = None, headers: Mapping[str, str] | None = None, description: str | None = None, params: QueryParamTypes | None = None, ) -> Assistant: """Create a new assistant. Useful when graph is configurable and you want to create different assistants based on different configurations. Args: graph_id: The ID of the graph the assistant should use. The graph ID is normally set in your langgraph.json configuration. config: Configuration to use for the graph. context: Static context to add to the assistant. !!! version-added "Added in version 0.6.0" metadata: Metadata to add to assistant. assistant_id: Assistant ID to use, will default to a random UUID if not provided. if_exists: How to handle duplicate creation. Defaults to 'raise' under the hood. Must be either 'raise' (raise error if duplicate), or 'do_nothing' (return existing assistant). name: The name of the assistant. Defaults to 'Untitled' under the hood. headers: Optional custom headers to include with the request. description: Optional description of the assistant. The description field is available for langgraph-api server version>=0.0.45 params: Optional query parameters to include with the request. Returns: The created assistant. ???+ example "Example Usage" ```python client = get_sync_client(url="http://localhost:2024") assistant = client.assistants.create( graph_id="agent", context={"model_name": "openai"}, metadata={"number":1}, assistant_id="my-assistant-id", if_exists="do_nothing", name="my_name" ) ``` """ payload: dict[str, Any] = { "graph_id": graph_id, } if config: payload["config"] = config if context: payload["context"] = context if metadata: payload["metadata"] = metadata if assistant_id: payload["assistant_id"] = assistant_id if if_exists: payload["if_exists"] = if_exists if name: payload["name"] = name if description: payload["description"] = description return self.http.post( "/assistants", json=payload, headers=headers, params=params ) def update( self, assistant_id: str, *, graph_id: str | None = None, config: Config | None = None, context: Context | None = None, metadata: Json = None, name: str | None = None, headers: Mapping[str, str] | None = None, description: str | None = None, params: QueryParamTypes | None = None, ) -> Assistant: """Update an assistant. Use this to point to a different graph, update the configuration, or change the metadata of an assistant. Args: assistant_id: Assistant to update. graph_id: The ID of the graph the assistant should use. The graph ID is normally set in your langgraph.json configuration. If `None`, assistant will keep pointing to same graph. config: Configuration to use for the graph. context: Static context to add to the assistant. !!! version-added "Added in version 0.6.0" metadata: Metadata to merge with existing assistant metadata. name: The new name for the assistant. headers: Optional custom headers to include with the request. description: Optional description of the assistant. The description field is available for langgraph-api server version>=0.0.45 Returns: The updated assistant. ???+ example "Example Usage" ```python client = get_sync_client(url="http://localhost:2024") assistant = client.assistants.update( assistant_id='e280dad7-8618-443f-87f1-8e41841c180f', graph_id="other-graph", context={"model_name": "anthropic"}, metadata={"number":2} ) ``` """ payload: dict[str, Any] = {} if graph_id: payload["graph_id"] = graph_id if config: payload["config"] = config if context: payload["context"] = context if metadata: payload["metadata"] = metadata if name: payload["name"] = name if description: payload["description"] = description return self.http.patch( f"/assistants/{assistant_id}", json=payload, headers=headers, params=params, ) def delete( self, assistant_id: str, *, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> None: """Delete an assistant. Args: assistant_id: The assistant ID to delete. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: `None` ???+ example "Example Usage" ```python client = get_sync_client(url="http://localhost:2024") client.assistants.delete( assistant_id="my_assistant_id" ) ``` """ self.http.delete(f"/assistants/{assistant_id}", headers=headers, params=params) @overload def search( self, *, metadata: Json = None, graph_id: str | None = None, name: str | None = None, limit: int = 10, offset: int = 0, sort_by: AssistantSortBy | None = None, sort_order: SortOrder | None = None, select: list[AssistantSelectField] | None = None, response_format: Literal["object"], headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> AssistantsSearchResponse: ... @overload def search( self, *, metadata: Json = None, graph_id: str | None = None, name: str | None = None, limit: int = 10, offset: int = 0, sort_by: AssistantSortBy | None = None, sort_order: SortOrder | None = None, select: list[AssistantSelectField] | None = None, response_format: Literal["array"] = "array", headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> list[Assistant]: ... def search( self, *, metadata: Json = None, graph_id: str | None = None, name: str | None = None, limit: int = 10, offset: int = 0, sort_by: AssistantSortBy | None = None, sort_order: SortOrder | None = None, select: list[AssistantSelectField] | None = None, response_format: Literal["array", "object"] = "array", headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> AssistantsSearchResponse | list[Assistant]: """Search for assistants. Args: metadata: Metadata to filter by. Exact match filter for each KV pair. graph_id: The ID of the graph to filter by. The graph ID is normally set in your langgraph.json configuration. name: The name of the assistant to filter by. The filtering logic will match assistants where 'name' is a substring (case insensitive) of the assistant name. limit: The maximum number of results to return. offset: The number of results to skip. sort_by: The field to sort by. sort_order: The order to sort by. select: Specific assistant fields to include in the response. response_format: Controls the response shape. Use ``"array"`` (default) to return a bare list of assistants, or ``"object"`` to return a mapping containing assistants plus pagination metadata. Defaults to "array", though this default will be changed to "object" in a future release. headers: Optional custom headers to include with the request. Returns: A list of assistants (when ``response_format=\"array\"``) or a mapping with the assistants and the next pagination cursor (when ``response_format=\"object\"``). ???+ example "Example Usage" ```python client = get_sync_client(url="http://localhost:2024") response = client.assistants.search( metadata = {"name":"my_name"}, graph_id="my_graph_id", limit=5, offset=5, response_format="object", ) assistants = response["assistants"] next_cursor = response["next"] ``` """ if response_format not in ("array", "object"): raise ValueError("response_format must be 'array' or 'object'") payload: dict[str, Any] = { "limit": limit, "offset": offset, } if metadata: payload["metadata"] = metadata if graph_id: payload["graph_id"] = graph_id if name: payload["name"] = name if sort_by: payload["sort_by"] = sort_by if sort_order: payload["sort_order"] = sort_order if select: payload["select"] = select next_cursor: str | None = None def capture_pagination(response: httpx.Response) -> None: nonlocal next_cursor next_cursor = response.headers.get("X-Pagination-Next") assistants = cast( list[Assistant], self.http.post( "/assistants/search", json=payload, headers=headers, params=params, on_response=capture_pagination if response_format == "object" else None, ), ) if response_format == "object": return {"assistants": assistants, "next": next_cursor} return assistants def count( self, *, metadata: Json = None, graph_id: str | None = None, name: str | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> int: """Count assistants matching filters. Args: metadata: Metadata to filter by. Exact match for each key/value. graph_id: Optional graph id to filter by. name: Optional name to filter by. The filtering logic will match assistants where 'name' is a substring (case insensitive) of the assistant name. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: int: Number of assistants matching the criteria. """ payload: dict[str, Any] = {} if metadata: payload["metadata"] = metadata if graph_id: payload["graph_id"] = graph_id if name: payload["name"] = name return self.http.post( "/assistants/count", json=payload, headers=headers, params=params ) def get_versions( self, assistant_id: str, metadata: Json = None, limit: int = 10, offset: int = 0, *, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> list[AssistantVersion]: """List all versions of an assistant. Args: assistant_id: The assistant ID to get versions for. metadata: Metadata to filter versions by. Exact match filter for each KV pair. limit: The maximum number of versions to return. offset: The number of versions to skip. headers: Optional custom headers to include with the request. Returns: A list of assistants. ???+ example "Example Usage" ```python client = get_sync_client(url="http://localhost:2024") assistant_versions = client.assistants.get_versions( assistant_id="my_assistant_id" ) ``` """ payload: dict[str, Any] = { "limit": limit, "offset": offset, } if metadata: payload["metadata"] = metadata return self.http.post( f"/assistants/{assistant_id}/versions", json=payload, headers=headers, params=params, ) def set_latest( self, assistant_id: str, version: int, *, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> Assistant: """Change the version of an assistant. Args: assistant_id: The assistant ID to delete. version: The version to change to. headers: Optional custom headers to include with the request. Returns: `Assistant` Object. ???+ example "Example Usage" ```python client = get_sync_client(url="http://localhost:2024") new_version_assistant = client.assistants.set_latest( assistant_id="my_assistant_id", version=3 ) ``` """ payload: dict[str, Any] = {"version": version} return self.http.post( f"/assistants/{assistant_id}/latest", json=payload, headers=headers, params=params, ) class SyncThreadsClient: """Synchronous client for managing threads in LangGraph. This class provides methods to create, retrieve, and manage threads, which represent conversations or stateful interactions. ???+ example "Example" ```python client = get_sync_client(url="http://localhost:2024") thread = client.threads.create(metadata={"user_id": "123"}) ``` """ def __init__(self, http: SyncHttpClient) -> None: self.http = http def get( self, thread_id: str, *, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> Thread: """Get a thread by ID. Args: thread_id: The ID of the thread to get. headers: Optional custom headers to include with the request. Returns: `Thread` object. ???+ example "Example Usage" ```python client = get_sync_client(url="http://localhost:2024") thread = client.threads.get( thread_id="my_thread_id" ) print(thread) ``` ```shell ----------------------------------------------------- { 'thread_id': 'my_thread_id', 'created_at': '2024-07-18T18:35:15.540834+00:00', 'updated_at': '2024-07-18T18:35:15.540834+00:00', 'metadata': {'graph_id': 'agent'} } ``` """ return self.http.get(f"/threads/{thread_id}", headers=headers, params=params) def create( self, *, metadata: Json = None, thread_id: str | None = None, if_exists: OnConflictBehavior | None = None, supersteps: Sequence[dict[str, Sequence[dict[str, Any]]]] | None = None, graph_id: str | None = None, ttl: int | Mapping[str, Any] | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> Thread: """Create a new thread. Args: metadata: Metadata to add to thread. thread_id: ID of thread. If `None`, ID will be a randomly generated UUID. if_exists: How to handle duplicate creation. Defaults to 'raise' under the hood. Must be either 'raise' (raise error if duplicate), or 'do_nothing' (return existing thread). supersteps: Apply a list of supersteps when creating a thread, each containing a sequence of updates. Each update has `values` or `command` and `as_node`. Used for copying a thread between deployments. graph_id: Optional graph ID to associate with the thread. ttl: Optional time-to-live in minutes for the thread. You can pass an integer (minutes) or a mapping with keys `ttl` and optional `strategy` (defaults to "delete"). headers: Optional custom headers to include with the request. Returns: The created `Thread`. ???+ example "Example Usage" ```python client = get_sync_client(url="http://localhost:2024") thread = client.threads.create( metadata={"number":1}, thread_id="my-thread-id", if_exists="raise" ) ``` ) """ payload: dict[str, Any] = {} if thread_id: payload["thread_id"] = thread_id if metadata or graph_id: payload["metadata"] = { **(metadata or {}), **({"graph_id": graph_id} if graph_id else {}), } if if_exists: payload["if_exists"] = if_exists if supersteps: payload["supersteps"] = [ { "updates": [ { "values": u["values"], "command": u.get("command"), "as_node": u["as_node"], } for u in s["updates"] ] } for s in supersteps ] if ttl is not None: if isinstance(ttl, (int, float)): payload["ttl"] = {"ttl": ttl, "strategy": "delete"} else: payload["ttl"] = ttl return self.http.post("/threads", json=payload, headers=headers, params=params) def update( self, thread_id: str, *, metadata: Mapping[str, Any], ttl: int | Mapping[str, Any] | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> Thread: """Update a thread. Args: thread_id: ID of thread to update. metadata: Metadata to merge with existing thread metadata. ttl: Optional time-to-live in minutes for the thread. You can pass an integer (minutes) or a mapping with keys `ttl` and optional `strategy` (defaults to "delete"). headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: The created `Thread`. ???+ example "Example Usage" ```python client = get_sync_client(url="http://localhost:2024") thread = client.threads.update( thread_id="my-thread-id", metadata={"number":1}, ttl=43_200, ) ``` """ payload: dict[str, Any] = {"metadata": metadata} if ttl is not None: if isinstance(ttl, (int, float)): payload["ttl"] = {"ttl": ttl, "strategy": "delete"} else: payload["ttl"] = ttl return self.http.patch( f"/threads/{thread_id}", json=payload, headers=headers, params=params, ) def delete( self, thread_id: str, *, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> None: """Delete a thread. Args: thread_id: The ID of the thread to delete. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: `None` ???+ example "Example Usage" ```python client.threads.delete( thread_id="my_thread_id" ) ``` """ self.http.delete(f"/threads/{thread_id}", headers=headers, params=params) def search( self, *, metadata: Json = None, values: Json = None, ids: Sequence[str] | None = None, status: ThreadStatus | None = None, limit: int = 10, offset: int = 0, sort_by: ThreadSortBy | None = None, sort_order: SortOrder | None = None, select: list[ThreadSelectField] | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> list[Thread]: """Search for threads. Args: metadata: Thread metadata to filter on. values: State values to filter on. ids: List of thread IDs to filter by. status: Thread status to filter on. Must be one of 'idle', 'busy', 'interrupted' or 'error'. limit: Limit on number of threads to return. offset: Offset in threads table to start search from. headers: Optional custom headers to include with the request. Returns: List of the threads matching the search parameters. ???+ example "Example Usage" ```python client = get_sync_client(url="http://localhost:2024") threads = client.threads.search( metadata={"number":1}, status="interrupted", limit=15, offset=5 ) ``` """ payload: dict[str, Any] = { "limit": limit, "offset": offset, } if metadata: payload["metadata"] = metadata if values: payload["values"] = values if ids: payload["ids"] = ids if status: payload["status"] = status if sort_by: payload["sort_by"] = sort_by if sort_order: payload["sort_order"] = sort_order if select: payload["select"] = select return self.http.post( "/threads/search", json=payload, headers=headers, params=params ) def count( self, *, metadata: Json = None, values: Json = None, status: ThreadStatus | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> int: """Count threads matching filters. Args: metadata: Thread metadata to filter on. values: State values to filter on. status: Thread status to filter on. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: int: Number of threads matching the criteria. """ payload: dict[str, Any] = {} if metadata: payload["metadata"] = metadata if values: payload["values"] = values if status: payload["status"] = status return self.http.post( "/threads/count", json=payload, headers=headers, params=params ) def copy( self, thread_id: str, *, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> None: """Copy a thread. Args: thread_id: The ID of the thread to copy. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: `None` ???+ example "Example Usage" ```python client = get_sync_client(url="http://localhost:2024") client.threads.copy( thread_id="my_thread_id" ) ``` """ return self.http.post( f"/threads/{thread_id}/copy", json=None, headers=headers, params=params ) def get_state( self, thread_id: str, checkpoint: Checkpoint | None = None, checkpoint_id: str | None = None, # deprecated *, subgraphs: bool = False, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> ThreadState: """Get the state of a thread. Args: thread_id: The ID of the thread to get the state of. checkpoint: The checkpoint to get the state of. subgraphs: Include subgraphs states. headers: Optional custom headers to include with the request. Returns: The thread of the state. ???+ example "Example Usage" ```python client = get_sync_client(url="http://localhost:2024") thread_state = client.threads.get_state( thread_id="my_thread_id", checkpoint_id="my_checkpoint_id" ) print(thread_state) ``` ```shell ---------------------------------------------------------------------------------------------------------------------------------------------------------------------- { 'values': { 'messages': [ { 'content': 'how are you?', 'additional_kwargs': {}, 'response_metadata': {}, 'type': 'human', 'name': None, 'id': 'fe0a5778-cfe9-42ee-b807-0adaa1873c10', 'example': False }, { 'content': "I'm doing well, thanks for asking! I'm an AI assistant created by Anthropic to be helpful, honest, and harmless.", 'additional_kwargs': {}, 'response_metadata': {}, 'type': 'ai', 'name': None, 'id': 'run-159b782c-b679-4830-83c6-cef87798fe8b', 'example': False, 'tool_calls': [], 'invalid_tool_calls': [], 'usage_metadata': None } ] }, 'next': [], 'checkpoint': { 'thread_id': 'e2496803-ecd5-4e0c-a779-3226296181c2', 'checkpoint_ns': '', 'checkpoint_id': '1ef4a9b8-e6fb-67b1-8001-abd5184439d1' } 'metadata': { 'step': 1, 'run_id': '1ef4a9b8-d7da-679a-a45a-872054341df2', 'source': 'loop', 'writes': { 'agent': { 'messages': [ { 'id': 'run-159b782c-b679-4830-83c6-cef87798fe8b', 'name': None, 'type': 'ai', 'content': "I'm doing well, thanks for asking! I'm an AI assistant created by Anthropic to be helpful, honest, and harmless.", 'example': False, 'tool_calls': [], 'usage_metadata': None, 'additional_kwargs': {}, 'response_metadata': {}, 'invalid_tool_calls': [] } ] } }, 'user_id': None, 'graph_id': 'agent', 'thread_id': 'e2496803-ecd5-4e0c-a779-3226296181c2', 'created_by': 'system', 'assistant_id': 'fe096781-5601-53d2-b2f6-0d3403f7e9ca'}, 'created_at': '2024-07-25T15:35:44.184703+00:00', 'parent_config': { 'thread_id': 'e2496803-ecd5-4e0c-a779-3226296181c2', 'checkpoint_ns': '', 'checkpoint_id': '1ef4a9b8-d80d-6fa7-8000-9300467fad0f' } } ``` """ if checkpoint: return self.http.post( f"/threads/{thread_id}/state/checkpoint", json={"checkpoint": checkpoint, "subgraphs": subgraphs}, headers=headers, params=params, ) elif checkpoint_id: get_params = {"subgraphs": subgraphs} if params: get_params = {**get_params, **params} return self.http.get( f"/threads/{thread_id}/state/{checkpoint_id}", params=get_params, headers=headers, ) else: get_params = {"subgraphs": subgraphs} if params: get_params = {**get_params, **params} return self.http.get( f"/threads/{thread_id}/state", params=get_params, headers=headers, ) def update_state( self, thread_id: str, values: dict[str, Any] | Sequence[dict] | None, *, as_node: str | None = None, checkpoint: Checkpoint | None = None, checkpoint_id: str | None = None, # deprecated headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> ThreadUpdateStateResponse: """Update the state of a thread. Args: thread_id: The ID of the thread to update. values: The values to update the state with. as_node: Update the state as if this node had just executed. checkpoint: The checkpoint to update the state of. headers: Optional custom headers to include with the request. Returns: Response after updating a thread's state. ???+ example "Example Usage" ```python response = await client.threads.update_state( thread_id="my_thread_id", values={"messages":[{"role": "user", "content": "hello!"}]}, as_node="my_node", ) print(response) ---------------------------------------------------------------------------------------------------------------------------------------------------------------------- { 'checkpoint': { 'thread_id': 'e2496803-ecd5-4e0c-a779-3226296181c2', 'checkpoint_ns': '', 'checkpoint_id': '1ef4a9b8-e6fb-67b1-8001-abd5184439d1', 'checkpoint_map': {} } } ``` """ payload: dict[str, Any] = { "values": values, } if checkpoint_id: payload["checkpoint_id"] = checkpoint_id if checkpoint: payload["checkpoint"] = checkpoint if as_node: payload["as_node"] = as_node return self.http.post( f"/threads/{thread_id}/state", json=payload, headers=headers, params=params ) def get_history( self, thread_id: str, *, limit: int = 10, before: str | Checkpoint | None = None, metadata: Mapping[str, Any] | None = None, checkpoint: Checkpoint | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> list[ThreadState]: """Get the state history of a thread. Args: thread_id: The ID of the thread to get the state history for. checkpoint: Return states for this subgraph. If empty defaults to root. limit: The maximum number of states to return. before: Return states before this checkpoint. metadata: Filter states by metadata key-value pairs. headers: Optional custom headers to include with the request. Returns: The state history of the `Thread`. ???+ example "Example Usage" ```python thread_state = client.threads.get_history( thread_id="my_thread_id", limit=5, before="my_timestamp", metadata={"name":"my_name"} ) ``` """ payload: dict[str, Any] = { "limit": limit, } if before: payload["before"] = before if metadata: payload["metadata"] = metadata if checkpoint: payload["checkpoint"] = checkpoint return self.http.post( f"/threads/{thread_id}/history", json=payload, headers=headers, params=params, ) def join_stream( self, thread_id: str, *, stream_mode: ThreadStreamMode | Sequence[ThreadStreamMode] = "run_modes", last_event_id: str | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> Iterator[StreamPart]: """Get a stream of events for a thread. Args: thread_id: The ID of the thread to get the stream for. last_event_id: The ID of the last event to get. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: An iterator of stream parts. ???+ example "Example Usage" ```python for chunk in client.threads.join_stream( thread_id="my_thread_id", last_event_id="my_event_id", stream_mode="run_modes", ): print(chunk) ``` """ query_params = { "stream_mode": stream_mode, } if params: query_params.update(params) return self.http.stream( f"/threads/{thread_id}/stream", "GET", headers={ **({"Last-Event-ID": last_event_id} if last_event_id else {}), **(headers or {}), }, params=query_params, ) class SyncRunsClient: """Synchronous client for managing runs in LangGraph. This class provides methods to create, retrieve, and manage runs, which represent individual executions of graphs. ???+ example "Example" ```python client = get_sync_client(url="http://localhost:2024") run = client.runs.create(thread_id="thread_123", assistant_id="asst_456") ``` """ def __init__(self, http: SyncHttpClient) -> None: self.http = http @overload def stream( self, thread_id: str, assistant_id: str, *, input: Input | None = None, command: Command | None = None, stream_mode: StreamMode | Sequence[StreamMode] = "values", stream_subgraphs: bool = False, metadata: Mapping[str, Any] | None = None, config: Config | None = None, context: Context | None = None, checkpoint: Checkpoint | None = None, checkpoint_id: str | None = None, checkpoint_during: bool | None = None, interrupt_before: All | Sequence[str] | None = None, interrupt_after: All | Sequence[str] | None = None, feedback_keys: Sequence[str] | None = None, on_disconnect: DisconnectMode | None = None, webhook: str | None = None, multitask_strategy: MultitaskStrategy | None = None, if_not_exists: IfNotExists | None = None, after_seconds: int | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, on_run_created: Callable[[RunCreateMetadata], None] | None = None, ) -> Iterator[StreamPart]: ... @overload def stream( self, thread_id: None, assistant_id: str, *, input: Input | None = None, command: Command | None = None, stream_mode: StreamMode | Sequence[StreamMode] = "values", stream_subgraphs: bool = False, stream_resumable: bool = False, metadata: Mapping[str, Any] | None = None, config: Config | None = None, context: Context | None = None, checkpoint_during: bool | None = None, interrupt_before: All | Sequence[str] | None = None, interrupt_after: All | Sequence[str] | None = None, feedback_keys: Sequence[str] | None = None, on_disconnect: DisconnectMode | None = None, on_completion: OnCompletionBehavior | None = None, if_not_exists: IfNotExists | None = None, webhook: str | None = None, after_seconds: int | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, on_run_created: Callable[[RunCreateMetadata], None] | None = None, ) -> Iterator[StreamPart]: ... def stream( self, thread_id: str | None, assistant_id: str, *, input: Input | None = None, command: Command | None = None, stream_mode: StreamMode | Sequence[StreamMode] = "values", stream_subgraphs: bool = False, stream_resumable: bool = False, metadata: Mapping[str, Any] | None = None, config: Config | None = None, context: Context | None = None, checkpoint: Checkpoint | None = None, checkpoint_id: str | None = None, checkpoint_during: bool | None = None, # deprecated interrupt_before: All | Sequence[str] | None = None, interrupt_after: All | Sequence[str] | None = None, feedback_keys: Sequence[str] | None = None, on_disconnect: DisconnectMode | None = None, on_completion: OnCompletionBehavior | None = None, webhook: str | None = None, multitask_strategy: MultitaskStrategy | None = None, if_not_exists: IfNotExists | None = None, after_seconds: int | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, on_run_created: Callable[[RunCreateMetadata], None] | None = None, durability: Durability | None = None, ) -> Iterator[StreamPart]: """Create a run and stream the results. Args: thread_id: the thread ID to assign to the thread. If `None` will create a stateless run. assistant_id: The assistant ID or graph name to stream from. If using graph name, will default to first assistant created from that graph. input: The input to the graph. command: The command to execute. stream_mode: The stream mode(s) to use. stream_subgraphs: Whether to stream output from subgraphs. stream_resumable: Whether the stream is considered resumable. If true, the stream can be resumed and replayed in its entirety even after disconnection. metadata: Metadata to assign to the run. config: The configuration for the assistant. context: Static context to add to the assistant. !!! version-added "Added in version 0.6.0" checkpoint: The checkpoint to resume from. checkpoint_during: (deprecated) Whether to checkpoint during the run (or only at the end/interruption). interrupt_before: Nodes to interrupt immediately before they get executed. interrupt_after: Nodes to Nodes to interrupt immediately after they get executed. feedback_keys: Feedback keys to assign to run. on_disconnect: The disconnect mode to use. Must be one of 'cancel' or 'continue'. on_completion: Whether to delete or keep the thread created for a stateless run. Must be one of 'delete' or 'keep'. webhook: Webhook to call after LangGraph API call is done. multitask_strategy: Multitask strategy to use. Must be one of 'reject', 'interrupt', 'rollback', or 'enqueue'. if_not_exists: How to handle missing thread. Defaults to 'reject'. Must be either 'reject' (raise error if missing), or 'create' (create new thread). after_seconds: The number of seconds to wait before starting the run. Use to schedule future runs. headers: Optional custom headers to include with the request. on_run_created: Optional callback to call when a run is created. durability: The durability to use for the run. Values are "sync", "async", or "exit". "async" means checkpoints are persisted async while next graph step executes, replaces checkpoint_during=True "sync" means checkpoints are persisted sync after graph step executes, replaces checkpoint_during=False "exit" means checkpoints are only persisted when the run exits, does not save intermediate steps Returns: Iterator of stream results. ???+ example "Example Usage" ```python client = get_sync_client(url="http://localhost:2024") async for chunk in client.runs.stream( thread_id=None, assistant_id="agent", input={"messages": [{"role": "user", "content": "how are you?"}]}, stream_mode=["values","debug"], metadata={"name":"my_run"}, context={"model_name": "anthropic"}, interrupt_before=["node_to_stop_before_1","node_to_stop_before_2"], interrupt_after=["node_to_stop_after_1","node_to_stop_after_2"], feedback_keys=["my_feedback_key_1","my_feedback_key_2"], webhook="https://my.fake.webhook.com", multitask_strategy="interrupt" ): print(chunk) ``` ```shell ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ StreamPart(event='metadata', data={'run_id': '1ef4a9b8-d7da-679a-a45a-872054341df2'}) StreamPart(event='values', data={'messages': [{'content': 'how are you?', 'additional_kwargs': {}, 'response_metadata': {}, 'type': 'human', 'name': None, 'id': 'fe0a5778-cfe9-42ee-b807-0adaa1873c10', 'example': False}]}) StreamPart(event='values', data={'messages': [{'content': 'how are you?', 'additional_kwargs': {}, 'response_metadata': {}, 'type': 'human', 'name': None, 'id': 'fe0a5778-cfe9-42ee-b807-0adaa1873c10', 'example': False}, {'content': "I'm doing well, thanks for asking! I'm an AI assistant created by Anthropic to be helpful, honest, and harmless.", 'additional_kwargs': {}, 'response_metadata': {}, 'type': 'ai', 'name': None, 'id': 'run-159b782c-b679-4830-83c6-cef87798fe8b', 'example': False, 'tool_calls': [], 'invalid_tool_calls': [], 'usage_metadata': None}]}) StreamPart(event='end', data=None) ``` """ if checkpoint_during is not None: warnings.warn( "`checkpoint_during` is deprecated and will be removed in a future version. Use `durability` instead.", DeprecationWarning, stacklevel=2, ) payload = { "input": input, "command": ( {k: v for k, v in command.items() if v is not None} if command else None ), "config": config, "context": context, "metadata": metadata, "stream_mode": stream_mode, "stream_subgraphs": stream_subgraphs, "stream_resumable": stream_resumable, "assistant_id": assistant_id, "interrupt_before": interrupt_before, "interrupt_after": interrupt_after, "feedback_keys": feedback_keys, "webhook": webhook, "checkpoint": checkpoint, "checkpoint_id": checkpoint_id, "checkpoint_during": checkpoint_during, "multitask_strategy": multitask_strategy, "if_not_exists": if_not_exists, "on_disconnect": on_disconnect, "on_completion": on_completion, "after_seconds": after_seconds, "durability": durability, } endpoint = ( f"/threads/{thread_id}/runs/stream" if thread_id is not None else "/runs/stream" ) def on_response(res: httpx.Response): """Callback function to handle the response.""" if on_run_created and (metadata := _get_run_metadata_from_response(res)): on_run_created(metadata) return self.http.stream( endpoint, "POST", json={k: v for k, v in payload.items() if v is not None}, params=params, headers=headers, on_response=on_response if on_run_created else None, ) @overload def create( self, thread_id: None, assistant_id: str, *, input: Input | None = None, command: Command | None = None, stream_mode: StreamMode | Sequence[StreamMode] = "values", stream_subgraphs: bool = False, stream_resumable: bool = False, metadata: Mapping[str, Any] | None = None, config: Config | None = None, context: Context | None = None, checkpoint_during: bool | None = None, interrupt_before: All | Sequence[str] | None = None, interrupt_after: All | Sequence[str] | None = None, webhook: str | None = None, on_completion: OnCompletionBehavior | None = None, if_not_exists: IfNotExists | None = None, after_seconds: int | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, on_run_created: Callable[[RunCreateMetadata], None] | None = None, ) -> Run: ... @overload def create( self, thread_id: str, assistant_id: str, *, input: Input | None = None, command: Command | None = None, stream_mode: StreamMode | Sequence[StreamMode] = "values", stream_subgraphs: bool = False, stream_resumable: bool = False, metadata: Mapping[str, Any] | None = None, config: Config | None = None, context: Context | None = None, checkpoint: Checkpoint | None = None, checkpoint_id: str | None = None, checkpoint_during: bool | None = None, interrupt_before: All | Sequence[str] | None = None, interrupt_after: All | Sequence[str] | None = None, webhook: str | None = None, multitask_strategy: MultitaskStrategy | None = None, if_not_exists: IfNotExists | None = None, after_seconds: int | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, on_run_created: Callable[[RunCreateMetadata], None] | None = None, ) -> Run: ... def create( self, thread_id: str | None, assistant_id: str, *, input: Input | None = None, command: Command | None = None, stream_mode: StreamMode | Sequence[StreamMode] = "values", stream_subgraphs: bool = False, stream_resumable: bool = False, metadata: Mapping[str, Any] | None = None, config: Config | None = None, context: Context | None = None, checkpoint: Checkpoint | None = None, checkpoint_id: str | None = None, checkpoint_during: bool | None = None, # deprecated interrupt_before: All | Sequence[str] | None = None, interrupt_after: All | Sequence[str] | None = None, webhook: str | None = None, multitask_strategy: MultitaskStrategy | None = None, if_not_exists: IfNotExists | None = None, on_completion: OnCompletionBehavior | None = None, after_seconds: int | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, on_run_created: Callable[[RunCreateMetadata], None] | None = None, durability: Durability | None = None, ) -> Run: """Create a background run. Args: thread_id: the thread ID to assign to the thread. If `None` will create a stateless run. assistant_id: The assistant ID or graph name to stream from. If using graph name, will default to first assistant created from that graph. input: The input to the graph. command: The command to execute. stream_mode: The stream mode(s) to use. stream_subgraphs: Whether to stream output from subgraphs. stream_resumable: Whether the stream is considered resumable. If true, the stream can be resumed and replayed in its entirety even after disconnection. metadata: Metadata to assign to the run. config: The configuration for the assistant. context: Static context to add to the assistant. !!! version-added "Added in version 0.6.0" checkpoint: The checkpoint to resume from. checkpoint_during: (deprecated) Whether to checkpoint during the run (or only at the end/interruption). interrupt_before: Nodes to interrupt immediately before they get executed. interrupt_after: Nodes to Nodes to interrupt immediately after they get executed. webhook: Webhook to call after LangGraph API call is done. multitask_strategy: Multitask strategy to use. Must be one of 'reject', 'interrupt', 'rollback', or 'enqueue'. on_completion: Whether to delete or keep the thread created for a stateless run. Must be one of 'delete' or 'keep'. if_not_exists: How to handle missing thread. Defaults to 'reject'. Must be either 'reject' (raise error if missing), or 'create' (create new thread). after_seconds: The number of seconds to wait before starting the run. Use to schedule future runs. headers: Optional custom headers to include with the request. on_run_created: Optional callback to call when a run is created. durability: The durability to use for the run. Values are "sync", "async", or "exit". "async" means checkpoints are persisted async while next graph step executes, replaces checkpoint_during=True "sync" means checkpoints are persisted sync after graph step executes, replaces checkpoint_during=False "exit" means checkpoints are only persisted when the run exits, does not save intermediate steps Returns: The created background `Run`. ???+ example "Example Usage" ```python client = get_sync_client(url="http://localhost:2024") background_run = client.runs.create( thread_id="my_thread_id", assistant_id="my_assistant_id", input={"messages": [{"role": "user", "content": "hello!"}]}, metadata={"name":"my_run"}, context={"model_name": "openai"}, interrupt_before=["node_to_stop_before_1","node_to_stop_before_2"], interrupt_after=["node_to_stop_after_1","node_to_stop_after_2"], webhook="https://my.fake.webhook.com", multitask_strategy="interrupt" ) print(background_run) ``` ```shell -------------------------------------------------------------------------------- { 'run_id': 'my_run_id', 'thread_id': 'my_thread_id', 'assistant_id': 'my_assistant_id', 'created_at': '2024-07-25T15:35:42.598503+00:00', 'updated_at': '2024-07-25T15:35:42.598503+00:00', 'metadata': {}, 'status': 'pending', 'kwargs': { 'input': { 'messages': [ { 'role': 'user', 'content': 'how are you?' } ] }, 'config': { 'metadata': { 'created_by': 'system' }, 'configurable': { 'run_id': 'my_run_id', 'user_id': None, 'graph_id': 'agent', 'thread_id': 'my_thread_id', 'checkpoint_id': None, 'assistant_id': 'my_assistant_id' } }, 'context': { 'model_name': 'openai' }, 'webhook': "https://my.fake.webhook.com", 'temporary': False, 'stream_mode': ['values'], 'feedback_keys': None, 'interrupt_after': ["node_to_stop_after_1","node_to_stop_after_2"], 'interrupt_before': ["node_to_stop_before_1","node_to_stop_before_2"] }, 'multitask_strategy': 'interrupt' } ``` """ if checkpoint_during is not None: warnings.warn( "`checkpoint_during` is deprecated and will be removed in a future version. Use `durability` instead.", DeprecationWarning, stacklevel=2, ) payload = { "input": input, "command": ( {k: v for k, v in command.items() if v is not None} if command else None ), "stream_mode": stream_mode, "stream_subgraphs": stream_subgraphs, "stream_resumable": stream_resumable, "config": config, "context": context, "metadata": metadata, "assistant_id": assistant_id, "interrupt_before": interrupt_before, "interrupt_after": interrupt_after, "webhook": webhook, "checkpoint": checkpoint, "checkpoint_id": checkpoint_id, "checkpoint_during": checkpoint_during, "multitask_strategy": multitask_strategy, "if_not_exists": if_not_exists, "on_completion": on_completion, "after_seconds": after_seconds, "durability": durability, } payload = {k: v for k, v in payload.items() if v is not None} def on_response(res: httpx.Response): """Callback function to handle the response.""" if on_run_created and (metadata := _get_run_metadata_from_response(res)): on_run_created(metadata) return self.http.post( f"/threads/{thread_id}/runs" if thread_id else "/runs", json=payload, params=params, headers=headers, on_response=on_response if on_run_created else None, ) def create_batch( self, payloads: list[RunCreate], *, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> list[Run]: """Create a batch of stateless background runs.""" def filter_payload(payload: RunCreate): return {k: v for k, v in payload.items() if v is not None} filtered = [filter_payload(payload) for payload in payloads] return self.http.post( "/runs/batch", json=filtered, headers=headers, params=params ) @overload def wait( self, thread_id: str, assistant_id: str, *, input: Input | None = None, command: Command | None = None, metadata: Mapping[str, Any] | None = None, config: Config | None = None, context: Context | None = None, checkpoint: Checkpoint | None = None, checkpoint_id: str | None = None, checkpoint_during: bool | None = None, interrupt_before: All | Sequence[str] | None = None, interrupt_after: All | Sequence[str] | None = None, webhook: str | None = None, on_disconnect: DisconnectMode | None = None, multitask_strategy: MultitaskStrategy | None = None, if_not_exists: IfNotExists | None = None, after_seconds: int | None = None, raise_error: bool = True, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, on_run_created: Callable[[RunCreateMetadata], None] | None = None, ) -> list[dict] | dict[str, Any]: ... @overload def wait( self, thread_id: None, assistant_id: str, *, input: Input | None = None, command: Command | None = None, metadata: Mapping[str, Any] | None = None, config: Config | None = None, context: Context | None = None, checkpoint_during: bool | None = None, interrupt_before: All | Sequence[str] | None = None, interrupt_after: All | Sequence[str] | None = None, webhook: str | None = None, on_disconnect: DisconnectMode | None = None, on_completion: OnCompletionBehavior | None = None, if_not_exists: IfNotExists | None = None, after_seconds: int | None = None, raise_error: bool = True, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, on_run_created: Callable[[RunCreateMetadata], None] | None = None, ) -> list[dict] | dict[str, Any]: ... def wait( self, thread_id: str | None, assistant_id: str, *, input: Input | None = None, command: Command | None = None, metadata: Mapping[str, Any] | None = None, config: Config | None = None, context: Context | None = None, checkpoint_during: bool | None = None, # deprecated checkpoint: Checkpoint | None = None, checkpoint_id: str | None = None, interrupt_before: All | Sequence[str] | None = None, interrupt_after: All | Sequence[str] | None = None, webhook: str | None = None, on_disconnect: DisconnectMode | None = None, on_completion: OnCompletionBehavior | None = None, multitask_strategy: MultitaskStrategy | None = None, if_not_exists: IfNotExists | None = None, after_seconds: int | None = None, raise_error: bool = True, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, on_run_created: Callable[[RunCreateMetadata], None] | None = None, durability: Durability | None = None, ) -> list[dict] | dict[str, Any]: """Create a run, wait until it finishes and return the final state. Args: thread_id: the thread ID to create the run on. If `None` will create a stateless run. assistant_id: The assistant ID or graph name to run. If using graph name, will default to first assistant created from that graph. input: The input to the graph. command: The command to execute. metadata: Metadata to assign to the run. config: The configuration for the assistant. context: Static context to add to the assistant. !!! version-added "Added in version 0.6.0" checkpoint: The checkpoint to resume from. checkpoint_during: (deprecated) Whether to checkpoint during the run (or only at the end/interruption). interrupt_before: Nodes to interrupt immediately before they get executed. interrupt_after: Nodes to Nodes to interrupt immediately after they get executed. webhook: Webhook to call after LangGraph API call is done. on_disconnect: The disconnect mode to use. Must be one of 'cancel' or 'continue'. on_completion: Whether to delete or keep the thread created for a stateless run. Must be one of 'delete' or 'keep'. multitask_strategy: Multitask strategy to use. Must be one of 'reject', 'interrupt', 'rollback', or 'enqueue'. if_not_exists: How to handle missing thread. Defaults to 'reject'. Must be either 'reject' (raise error if missing), or 'create' (create new thread). after_seconds: The number of seconds to wait before starting the run. Use to schedule future runs. raise_error: Whether to raise an error if the run fails. headers: Optional custom headers to include with the request. on_run_created: Optional callback to call when a run is created. durability: The durability to use for the run. Values are "sync", "async", or "exit". "async" means checkpoints are persisted async while next graph step executes, replaces checkpoint_during=True "sync" means checkpoints are persisted sync after graph step executes, replaces checkpoint_during=False "exit" means checkpoints are only persisted when the run exits, does not save intermediate steps Returns: The output of the `Run`. ???+ example "Example Usage" ```python final_state_of_run = client.runs.wait( thread_id=None, assistant_id="agent", input={"messages": [{"role": "user", "content": "how are you?"}]}, metadata={"name":"my_run"}, context={"model_name": "anthropic"}, interrupt_before=["node_to_stop_before_1","node_to_stop_before_2"], interrupt_after=["node_to_stop_after_1","node_to_stop_after_2"], webhook="https://my.fake.webhook.com", multitask_strategy="interrupt" ) print(final_state_of_run) ``` ```shell ------------------------------------------------------------------------------------------------------------------------------------------- { 'messages': [ { 'content': 'how are you?', 'additional_kwargs': {}, 'response_metadata': {}, 'type': 'human', 'name': None, 'id': 'f51a862c-62fe-4866-863b-b0863e8ad78a', 'example': False }, { 'content': "I'm doing well, thanks for asking! I'm an AI assistant created by Anthropic to be helpful, honest, and harmless.", 'additional_kwargs': {}, 'response_metadata': {}, 'type': 'ai', 'name': None, 'id': 'run-bf1cd3c6-768f-4c16-b62d-ba6f17ad8b36', 'example': False, 'tool_calls': [], 'invalid_tool_calls': [], 'usage_metadata': None } ] } ``` """ if checkpoint_during is not None: warnings.warn( "`checkpoint_during` is deprecated and will be removed in a future version. Use `durability` instead.", DeprecationWarning, stacklevel=2, ) payload = { "input": input, "command": ( {k: v for k, v in command.items() if v is not None} if command else None ), "config": config, "context": context, "metadata": metadata, "assistant_id": assistant_id, "interrupt_before": interrupt_before, "interrupt_after": interrupt_after, "webhook": webhook, "checkpoint": checkpoint, "checkpoint_id": checkpoint_id, "multitask_strategy": multitask_strategy, "if_not_exists": if_not_exists, "on_disconnect": on_disconnect, "checkpoint_during": checkpoint_during, "on_completion": on_completion, "after_seconds": after_seconds, "raise_error": raise_error, "durability": durability, } def on_response(res: httpx.Response): """Callback function to handle the response.""" if on_run_created and (metadata := _get_run_metadata_from_response(res)): on_run_created(metadata) endpoint = ( f"/threads/{thread_id}/runs/wait" if thread_id is not None else "/runs/wait" ) return self.http.request_reconnect( endpoint, "POST", json={k: v for k, v in payload.items() if v is not None}, params=params, headers=headers, on_response=on_response if on_run_created else None, ) def list( self, thread_id: str, *, limit: int = 10, offset: int = 0, status: RunStatus | None = None, select: list[RunSelectField] | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> list[Run]: """List runs. Args: thread_id: The thread ID to list runs for. limit: The maximum number of results to return. offset: The number of results to skip. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: The runs for the thread. ???+ example "Example Usage" ```python client = get_sync_client(url="http://localhost:2024") client.runs.list( thread_id="thread_id", limit=5, offset=5, ) ``` """ query_params: dict[str, Any] = {"limit": limit, "offset": offset} if status is not None: query_params["status"] = status if select: query_params["select"] = select if params: query_params.update(params) return self.http.get( f"/threads/{thread_id}/runs", params=query_params, headers=headers ) def get( self, thread_id: str, run_id: str, *, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> Run: """Get a run. Args: thread_id: The thread ID to get. run_id: The run ID to get. headers: Optional custom headers to include with the request. Returns: `Run` object. ???+ example "Example Usage" ```python run = client.runs.get( thread_id="thread_id_to_delete", run_id="run_id_to_delete", ) ``` """ return self.http.get( f"/threads/{thread_id}/runs/{run_id}", headers=headers, params=params ) def cancel( self, thread_id: str, run_id: str, *, wait: bool = False, action: CancelAction = "interrupt", headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> None: """Get a run. Args: thread_id: The thread ID to cancel. run_id: The run ID to cancel. wait: Whether to wait until run has completed. action: Action to take when cancelling the run. Possible values are `interrupt` or `rollback`. Default is `interrupt`. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: `None` ???+ example "Example Usage" ```python client = get_sync_client(url="http://localhost:2024") client.runs.cancel( thread_id="thread_id_to_cancel", run_id="run_id_to_cancel", wait=True, action="interrupt" ) ``` """ query_params = { "wait": 1 if wait else 0, "action": action, } if params: query_params.update(params) if wait: return self.http.request_reconnect( f"/threads/{thread_id}/runs/{run_id}/cancel", "POST", json=None, params=query_params, headers=headers, ) return self.http.post( f"/threads/{thread_id}/runs/{run_id}/cancel", json=None, params=query_params, headers=headers, ) def join( self, thread_id: str, run_id: str, *, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> dict: """Block until a run is done. Returns the final state of the thread. Args: thread_id: The thread ID to join. run_id: The run ID to join. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: `None` ???+ example "Example Usage" ```python client = get_sync_client(url="http://localhost:2024") client.runs.join( thread_id="thread_id_to_join", run_id="run_id_to_join" ) ``` """ return self.http.request_reconnect( f"/threads/{thread_id}/runs/{run_id}/join", "GET", headers=headers, params=params, ) def join_stream( self, thread_id: str, run_id: str, *, cancel_on_disconnect: bool = False, stream_mode: StreamMode | Sequence[StreamMode] | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, last_event_id: str | None = None, ) -> Iterator[StreamPart]: """Stream output from a run in real-time, until the run is done. Output is not buffered, so any output produced before this call will not be received here. Args: thread_id: The thread ID to join. run_id: The run ID to join. stream_mode: The stream mode(s) to use. Must be a subset of the stream modes passed when creating the run. Background runs default to having the union of all stream modes. cancel_on_disconnect: Whether to cancel the run when the stream is disconnected. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. last_event_id: The last event ID to use for the stream. Returns: `None` ???+ example "Example Usage" ```python client = get_sync_client(url="http://localhost:2024") client.runs.join_stream( thread_id="thread_id_to_join", run_id="run_id_to_join", stream_mode=["values", "debug"] ) ``` """ query_params = { "stream_mode": stream_mode, "cancel_on_disconnect": cancel_on_disconnect, } if params: query_params.update(params) return self.http.stream( f"/threads/{thread_id}/runs/{run_id}/stream", "GET", params=query_params, headers={ **({"Last-Event-ID": last_event_id} if last_event_id else {}), **(headers or {}), } or None, ) def delete( self, thread_id: str, run_id: str, *, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> None: """Delete a run. Args: thread_id: The thread ID to delete. run_id: The run ID to delete. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: `None` ???+ example "Example Usage" ```python client = get_sync_client(url="http://localhost:2024") client.runs.delete( thread_id="thread_id_to_delete", run_id="run_id_to_delete" ) ``` """ self.http.delete( f"/threads/{thread_id}/runs/{run_id}", headers=headers, params=params ) class SyncCronClient: """Synchronous client for managing cron jobs in LangGraph. This class provides methods to create and manage scheduled tasks (cron jobs) for automated graph executions. ???+ example "Example" ```python client = get_sync_client(url="http://localhost:8123") cron_job = client.crons.create_for_thread(thread_id="thread_123", assistant_id="asst_456", schedule="0 * * * *") ``` !!! note "Feature Availability" The crons client functionality is not supported on all licenses. Please check the relevant license documentation for the most up-to-date details on feature availability. """ def __init__(self, http_client: SyncHttpClient) -> None: self.http = http_client def create_for_thread( self, thread_id: str, assistant_id: str, *, schedule: str, input: Input | None = None, metadata: Mapping[str, Any] | None = None, config: Config | None = None, context: Context | None = None, checkpoint_during: bool | None = None, interrupt_before: All | list[str] | None = None, interrupt_after: All | list[str] | None = None, webhook: str | None = None, multitask_strategy: str | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> Run: """Create a cron job for a thread. Args: thread_id: the thread ID to run the cron job on. assistant_id: The assistant ID or graph name to use for the cron job. If using graph name, will default to first assistant created from that graph. schedule: The cron schedule to execute this job on. input: The input to the graph. metadata: Metadata to assign to the cron job runs. config: The configuration for the assistant. context: Static context to add to the assistant. !!! version-added "Added in version 0.6.0" checkpoint_during: Whether to checkpoint during the run (or only at the end/interruption). interrupt_before: Nodes to interrupt immediately before they get executed. interrupt_after: Nodes to Nodes to interrupt immediately after they get executed. webhook: Webhook to call after LangGraph API call is done. multitask_strategy: Multitask strategy to use. Must be one of 'reject', 'interrupt', 'rollback', or 'enqueue'. headers: Optional custom headers to include with the request. Returns: The cron `Run`. ???+ example "Example Usage" ```python client = get_sync_client(url="http://localhost:8123") cron_run = client.crons.create_for_thread( thread_id="my-thread-id", assistant_id="agent", schedule="27 15 * * *", input={"messages": [{"role": "user", "content": "hello!"}]}, metadata={"name":"my_run"}, context={"model_name": "openai"}, interrupt_before=["node_to_stop_before_1","node_to_stop_before_2"], interrupt_after=["node_to_stop_after_1","node_to_stop_after_2"], webhook="https://my.fake.webhook.com", multitask_strategy="interrupt" ) ``` """ payload = { "schedule": schedule, "input": input, "config": config, "metadata": metadata, "context": context, "assistant_id": assistant_id, "interrupt_before": interrupt_before, "interrupt_after": interrupt_after, "checkpoint_during": checkpoint_during, "webhook": webhook, "multitask_strategy": multitask_strategy, } payload = {k: v for k, v in payload.items() if v is not None} return self.http.post( f"/threads/{thread_id}/runs/crons", json=payload, headers=headers, params=params, ) def create( self, assistant_id: str, *, schedule: str, input: Input | None = None, metadata: Mapping[str, Any] | None = None, config: Config | None = None, context: Context | None = None, checkpoint_during: bool | None = None, interrupt_before: All | list[str] | None = None, interrupt_after: All | list[str] | None = None, webhook: str | None = None, multitask_strategy: str | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> Run: """Create a cron run. Args: assistant_id: The assistant ID or graph name to use for the cron job. If using graph name, will default to first assistant created from that graph. schedule: The cron schedule to execute this job on. input: The input to the graph. metadata: Metadata to assign to the cron job runs. config: The configuration for the assistant. context: Static context to add to the assistant. !!! version-added "Added in version 0.6.0" checkpoint_during: Whether to checkpoint during the run (or only at the end/interruption). interrupt_before: Nodes to interrupt immediately before they get executed. interrupt_after: Nodes to Nodes to interrupt immediately after they get executed. webhook: Webhook to call after LangGraph API call is done. multitask_strategy: Multitask strategy to use. Must be one of 'reject', 'interrupt', 'rollback', or 'enqueue'. headers: Optional custom headers to include with the request. Returns: The cron `Run`. ???+ example "Example Usage" ```python client = get_sync_client(url="http://localhost:8123") cron_run = client.crons.create( assistant_id="agent", schedule="27 15 * * *", input={"messages": [{"role": "user", "content": "hello!"}]}, metadata={"name":"my_run"}, context={"model_name": "openai"}, checkpoint_during=True, interrupt_before=["node_to_stop_before_1","node_to_stop_before_2"], interrupt_after=["node_to_stop_after_1","node_to_stop_after_2"], webhook="https://my.fake.webhook.com", multitask_strategy="interrupt" ) ``` """ payload = { "schedule": schedule, "input": input, "config": config, "metadata": metadata, "context": context, "assistant_id": assistant_id, "interrupt_before": interrupt_before, "interrupt_after": interrupt_after, "webhook": webhook, "checkpoint_during": checkpoint_during, "multitask_strategy": multitask_strategy, } payload = {k: v for k, v in payload.items() if v is not None} return self.http.post( "/runs/crons", json=payload, headers=headers, params=params ) def delete( self, cron_id: str, *, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> None: """Delete a cron. Args: cron_id: The cron ID to delete. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: `None` ???+ example "Example Usage" ```python client = get_sync_client(url="http://localhost:8123") client.crons.delete( cron_id="cron_to_delete" ) ``` """ self.http.delete(f"/runs/crons/{cron_id}", headers=headers, params=params) def search( self, *, assistant_id: str | None = None, thread_id: str | None = None, limit: int = 10, offset: int = 0, sort_by: CronSortBy | None = None, sort_order: SortOrder | None = None, select: list[CronSelectField] | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> list[Cron]: """Get a list of cron jobs. Args: assistant_id: The assistant ID or graph name to search for. thread_id: the thread ID to search for. limit: The maximum number of results to return. offset: The number of results to skip. headers: Optional custom headers to include with the request. Returns: The list of cron jobs returned by the search, ???+ example "Example Usage" ```python client = get_sync_client(url="http://localhost:8123") cron_jobs = client.crons.search( assistant_id="my_assistant_id", thread_id="my_thread_id", limit=5, offset=5, ) print(cron_jobs) ``` ```shell ---------------------------------------------------------- [ { 'cron_id': '1ef3cefa-4c09-6926-96d0-3dc97fd5e39b', 'assistant_id': 'my_assistant_id', 'thread_id': 'my_thread_id', 'user_id': None, 'payload': { 'input': {'start_time': ''}, 'schedule': '4 * * * *', 'assistant_id': 'my_assistant_id' }, 'schedule': '4 * * * *', 'next_run_date': '2024-07-25T17:04:00+00:00', 'end_time': None, 'created_at': '2024-07-08T06:02:23.073257+00:00', 'updated_at': '2024-07-08T06:02:23.073257+00:00' } ] ``` """ payload = { "assistant_id": assistant_id, "thread_id": thread_id, "limit": limit, "offset": offset, } if sort_by: payload["sort_by"] = sort_by if sort_order: payload["sort_order"] = sort_order if select: payload["select"] = select payload = {k: v for k, v in payload.items() if v is not None} return self.http.post( "/runs/crons/search", json=payload, headers=headers, params=params ) def count( self, *, assistant_id: str | None = None, thread_id: str | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> int: """Count cron jobs matching filters. Args: assistant_id: Assistant ID to filter by. thread_id: Thread ID to filter by. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: int: Number of crons matching the criteria. """ payload: dict[str, Any] = {} if assistant_id: payload["assistant_id"] = assistant_id if thread_id: payload["thread_id"] = thread_id return self.http.post( "/runs/crons/count", json=payload, headers=headers, params=params ) class SyncStoreClient: """A client for synchronous operations on a key-value store. Provides methods to interact with a remote key-value store, allowing storage and retrieval of items within namespaced hierarchies. ???+ example "Example" ```python client = get_sync_client(url="http://localhost:2024")) client.store.put_item(["users", "profiles"], "user123", {"name": "Alice", "age": 30}) ``` """ def __init__(self, http: SyncHttpClient) -> None: self.http = http def put_item( self, namespace: Sequence[str], /, key: str, value: Mapping[str, Any], index: Literal[False] | list[str] | None = None, ttl: int | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> None: """Store or update an item. Args: namespace: A list of strings representing the namespace path. key: The unique identifier for the item within the namespace. value: A dictionary containing the item's data. index: Controls search indexing - None (use defaults), False (disable), or list of field paths to index. ttl: Optional time-to-live in minutes for the item, or None for no expiration. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: `None` ???+ example "Example Usage" ```python client = get_sync_client(url="http://localhost:8123") client.store.put_item( ["documents", "user123"], key="item456", value={"title": "My Document", "content": "Hello World"} ) ``` """ for label in namespace: if "." in label: raise ValueError( f"Invalid namespace label '{label}'. Namespace labels cannot contain periods ('.')." ) payload = { "namespace": namespace, "key": key, "value": value, "index": index, "ttl": ttl, } self.http.put( "/store/items", json=_provided_vals(payload), headers=headers, params=params ) def get_item( self, namespace: Sequence[str], /, key: str, *, refresh_ttl: bool | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> Item: """Retrieve a single item. Args: key: The unique identifier for the item. namespace: Optional list of strings representing the namespace path. refresh_ttl: Whether to refresh the TTL on this read operation. If `None`, uses the store's default behavior. headers: Optional custom headers to include with the request. Returns: The retrieved item. ???+ example "Example Usage" ```python client = get_sync_client(url="http://localhost:8123") item = client.store.get_item( ["documents", "user123"], key="item456", ) print(item) ``` ```shell ---------------------------------------------------------------- { 'namespace': ['documents', 'user123'], 'key': 'item456', 'value': {'title': 'My Document', 'content': 'Hello World'}, 'created_at': '2024-07-30T12:00:00Z', 'updated_at': '2024-07-30T12:00:00Z' } ``` """ for label in namespace: if "." in label: raise ValueError( f"Invalid namespace label '{label}'. Namespace labels cannot contain periods ('.')." ) query_params = {"key": key, "namespace": ".".join(namespace)} if refresh_ttl is not None: query_params["refresh_ttl"] = refresh_ttl if params: query_params.update(params) return self.http.get("/store/items", params=query_params, headers=headers) def delete_item( self, namespace: Sequence[str], /, key: str, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> None: """Delete an item. Args: key: The unique identifier for the item. namespace: Optional list of strings representing the namespace path. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: `None` ???+ example "Example Usage" ```python client = get_sync_client(url="http://localhost:8123") client.store.delete_item( ["documents", "user123"], key="item456", ) ``` """ self.http.delete( "/store/items", json={"key": key, "namespace": namespace}, headers=headers, params=params, ) def search_items( self, namespace_prefix: Sequence[str], /, filter: Mapping[str, Any] | None = None, limit: int = 10, offset: int = 0, query: str | None = None, refresh_ttl: bool | None = None, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> SearchItemsResponse: """Search for items within a namespace prefix. Args: namespace_prefix: List of strings representing the namespace prefix. filter: Optional dictionary of key-value pairs to filter results. limit: Maximum number of items to return (default is 10). offset: Number of items to skip before returning results (default is 0). query: Optional query for natural language search. refresh_ttl: Whether to refresh the TTL on items returned by this search. If `None`, uses the store's default behavior. headers: Optional custom headers to include with the request. params: Optional query parameters to include with the request. Returns: A list of items matching the search criteria. ???+ example "Example Usage" ```python client = get_sync_client(url="http://localhost:8123") items = client.store.search_items( ["documents"], filter={"author": "John Doe"}, limit=5, offset=0 ) print(items) ``` ```shell ---------------------------------------------------------------- { "items": [ { "namespace": ["documents", "user123"], "key": "item789", "value": { "title": "Another Document", "author": "John Doe" }, "created_at": "2024-07-30T12:00:00Z", "updated_at": "2024-07-30T12:00:00Z" }, # ... additional items ... ] } ``` """ payload = { "namespace_prefix": namespace_prefix, "filter": filter, "limit": limit, "offset": offset, "query": query, "refresh_ttl": refresh_ttl, } return self.http.post( "/store/items/search", json=_provided_vals(payload), headers=headers, params=params, ) def list_namespaces( self, prefix: list[str] | None = None, suffix: list[str] | None = None, max_depth: int | None = None, limit: int = 100, offset: int = 0, *, headers: Mapping[str, str] | None = None, params: QueryParamTypes | None = None, ) -> ListNamespaceResponse: """List namespaces with optional match conditions. Args: prefix: Optional list of strings representing the prefix to filter namespaces. suffix: Optional list of strings representing the suffix to filter namespaces. max_depth: Optional integer specifying the maximum depth of namespaces to return. limit: Maximum number of namespaces to return (default is 100). offset: Number of namespaces to skip before returning results (default is 0). headers: Optional custom headers to include with the request. Returns: A list of namespaces matching the criteria. ???+ example "Example Usage" ```python client = get_sync_client(url="http://localhost:8123") namespaces = client.store.list_namespaces( prefix=["documents"], max_depth=3, limit=10, offset=0 ) print(namespaces) ``` ```shell ---------------------------------------------------------------- [ ["documents", "user123", "reports"], ["documents", "user456", "invoices"], ... ] ``` """ payload = { "prefix": prefix, "suffix": suffix, "max_depth": max_depth, "limit": limit, "offset": offset, } return self.http.post( "/store/namespaces", json=_provided_vals(payload), headers=headers, params=params, ) def _provided_vals(d: Mapping[str, Any]) -> dict[str, Any]: return {k: v for k, v in d.items() if v is not None} _registered_transports: list[httpx.ASGITransport] = [] # Do not move; this is used in the server. def configure_loopback_transports(app: Any) -> None: for transport in _registered_transports: transport.app = app @functools.lru_cache(maxsize=1) def get_asgi_transport() -> type[httpx.ASGITransport]: try: from langgraph_api import asgi_transport # type: ignore[unresolved-import] return asgi_transport.ASGITransport except ImportError: # Older versions of the server return httpx.ASGITransport TimeoutTypes = ( None | float | tuple[float | None, float | None] | tuple[float | None, float | None, float | None, float | None] | httpx.Timeout )