complete_agent_flow_rule.py 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670
  1. """
  2. 完整的智能体工作流 (Complete Agent Flow)
  3. =====================================
  4. 此工作流整合了规划、大纲生成和指标计算四个核心智能体,实现完整的报告生成流程。
  5. 包含的智能体:
  6. 1. PlanningAgent (规划智能体) - 分析状态并做出决策
  7. 2. OutlineAgent (大纲生成智能体) - 生成报告结构和指标需求
  8. 3. MetricCalculationAgent (指标计算智能体) - 执行标准指标计算
  9. 4. RulesEngineMetricCalculationAgent (规则引擎指标计算智能体) - 执行规则引擎指标计算
  10. 工作流程:
  11. 1. 规划节点 → 分析当前状态,决定下一步行动
  12. 2. 大纲生成节点 → 生成报告大纲和指标需求
  13. 3. 指标判断节点 → 根据大纲确定需要计算的指标
  14. 4. 指标计算节点 → 执行具体的指标计算任务
  15. 技术特点:
  16. - 基于LangGraph的状态机工作流
  17. - 支持条件路由和状态管理
  18. - 完善的错误处理机制
  19. - 详细的执行日志记录
  20. 作者: Big Agent Team
  21. 版本: 1.0.0
  22. 创建时间: 2024-12-20
  23. """
  24. import asyncio
  25. from typing import Dict, Any, List
  26. from datetime import datetime
  27. from langgraph.graph import StateGraph, START, END
  28. from llmops.workflow_state import (
  29. IntegratedWorkflowState,
  30. create_initial_integrated_state,
  31. get_calculation_progress,
  32. update_state_with_outline_generation,
  33. update_state_with_planning_decision,
  34. update_state_with_data_classified,
  35. convert_numpy_types,
  36. )
  37. from llmops.agents.outline_agent import generate_report_outline
  38. from llmops.agents.planning_agent import plan_next_action
  39. from llmops.agents.rules_engine_metric_calculation_agent import RulesEngineMetricCalculationAgent
  40. from llmops.agents.data_manager import DataManager
  41. import os
  42. from llmops.agents.data_classify_agent import data_classify
  43. class CompleteAgentFlow:
  44. """完整的智能体工作流"""
  45. def __init__(self, api_key: str, base_url: str = "https://api.deepseek.com"):
  46. """
  47. 初始化完整的工作流
  48. Args:
  49. api_key: DeepSeek API密钥
  50. base_url: DeepSeek API基础URL
  51. """
  52. self.api_key = api_key
  53. self.base_url = base_url
  54. # 初始规则引擎智能体
  55. self.rules_engine_agent = RulesEngineMetricCalculationAgent(api_key, base_url)
  56. # 创建工作流图
  57. self.workflow = self._create_workflow()
  58. def _create_workflow(self) -> StateGraph:
  59. """创建LangGraph工作流"""
  60. workflow = StateGraph(IntegratedWorkflowState)
  61. # 添加节点
  62. workflow.add_node("planning_node", self._planning_node)
  63. workflow.add_node("outline_generator", self._outline_generator_node)
  64. workflow.add_node("data_classify", self._data_classify_node)
  65. # 设置入口点
  66. workflow.set_entry_point("planning_node")
  67. # 添加条件边 - 基于规划决策路由
  68. workflow.add_conditional_edges(
  69. "planning_node",
  70. self._route_from_planning,
  71. {
  72. "outline_generator": "outline_generator",
  73. "metric_calculator": "metric_calculator",
  74. "data_classify": "data_classify",
  75. END: END
  76. }
  77. )
  78. # 从各个节点返回规划节点重新决策
  79. workflow.add_edge("data_classify", "planning_node")
  80. workflow.add_edge("outline_generator", "planning_node")
  81. workflow.add_edge("metric_calculator", "planning_node")
  82. return workflow
  83. def _route_from_planning(self, state: IntegratedWorkflowState) -> str:
  84. """
  85. 从规划节点路由到下一个节点
  86. Args:
  87. state: 当前状态
  88. Returns:
  89. 目标节点名称
  90. """
  91. print(f"\n🔍 [路由决策] 步骤={state['planning_step']}, "
  92. f"数据集分类打标数量={len(state.get('data_set_classified', []))}",
  93. f"大纲={state.get('outline_draft') is not None}, "
  94. f"指标需求={len(state.get('metrics_requirements', []))}")
  95. # 防止无限循环
  96. if state['planning_step'] > 30:
  97. print("⚠️ 规划步骤超过30次,强制结束流程")
  98. return END
  99. # 数据分类打标数量为0 → 分类打标
  100. if len(state.get("data_set_classified", [])) == 0:
  101. print("→ 路由到 data_classify(分类打标)")
  102. return "data_classify"
  103. # 如果大纲为空 → 生成大纲
  104. if not state.get("outline_draft"):
  105. print("→ 路由到 outline_generator(生成大纲)")
  106. return "outline_generator"
  107. # 如果指标需求为空但大纲已生成 → 评估指标需求
  108. if not state.get("metrics_requirements") and state.get("outline_draft"):
  109. print("→ 路由到 metric_evaluator(评估指标需求)")
  110. return "metric_evaluator"
  111. # 计算覆盖率
  112. progress = get_calculation_progress(state)
  113. coverage = progress["coverage_rate"]
  114. print(f" 指标覆盖率 = {coverage:.2%}")
  115. # 如果有待计算指标且覆盖率 < 100% → 计算指标
  116. if state.get("pending_metric_ids") and coverage < 1.0:
  117. print(f"→ 路由到 metric_calculator(计算指标,覆盖率={coverage:.2%})")
  118. return "metric_calculator"
  119. # 如果没有待计算指标或覆盖率 >= 80% → 生成最终报告
  120. if not state.get("pending_metric_ids") or coverage >= 0.8:
  121. print(f"→ 路由到 report_finalizer(生成最终报告,覆盖率={coverage:.2%})")
  122. return "report_finalizer"
  123. # 默认返回规划节点
  124. return "planning_node"
  125. async def _planning_node(self, state: IntegratedWorkflowState) -> IntegratedWorkflowState:
  126. """规划节点:分析状态并做出决策"""
  127. try:
  128. print("🧠 正在执行规划分析...")
  129. # 使用规划智能体做出决策
  130. decision = await plan_next_action(
  131. question=state["question"],
  132. industry=state["industry"],
  133. current_state=state,
  134. api_key=self.api_key
  135. )
  136. # 更新状态
  137. new_state = update_state_with_planning_decision(state, {
  138. "decision": decision.decision,
  139. "next_route": self._decision_to_route(decision.decision),
  140. "metrics_to_compute": decision.metrics_to_compute
  141. })
  142. # 添加决策消息
  143. decision_msg = self._format_decision_message(decision)
  144. new_state["messages"].append({
  145. "role": "assistant",
  146. "content": decision_msg,
  147. "timestamp": datetime.now().isoformat()
  148. })
  149. print(f"✅ 规划决策完成:{decision.decision}")
  150. return convert_numpy_types(new_state)
  151. except Exception as e:
  152. print(f"❌ 规划节点执行失败: {e}")
  153. new_state = state.copy()
  154. new_state["errors"].append(f"规划节点错误: {str(e)}")
  155. return convert_numpy_types(new_state)
  156. async def _outline_generator_node(self, state: IntegratedWorkflowState) -> IntegratedWorkflowState:
  157. """大纲生成节点"""
  158. try:
  159. print("📝 正在生成报告大纲...")
  160. # 生成大纲(支持重试机制)
  161. outline = await generate_report_outline(
  162. question=state["question"],
  163. industry=state["industry"],
  164. sample_data=state["data_set"][:3], # 使用前3个样本
  165. api_key=self.api_key,
  166. max_retries=3, # 最多重试5次
  167. retry_delay=3.0 # 每次重试间隔3秒
  168. )
  169. # 更新状态
  170. new_state = update_state_with_outline_generation(state, outline)
  171. print(f"✅ 大纲生成完成:{outline.report_title}")
  172. print(f" 包含 {len(outline.sections)} 个章节,{len(outline.global_metrics)} 个指标需求")
  173. # 分析并打印AI的指标选择推理过程
  174. self._print_ai_selection_analysis(outline)
  175. return convert_numpy_types(new_state)
  176. except Exception as e:
  177. print(f"❌ 大纲生成失败: {e}")
  178. new_state = state.copy()
  179. new_state["errors"].append(f"大纲生成错误: {str(e)}")
  180. return convert_numpy_types(new_state)
  181. async def _data_classify_node(self, state: IntegratedWorkflowState) -> IntegratedWorkflowState:
  182. """数据分类打标节点"""
  183. try:
  184. print("📝 正在对数据进行分类打标...")
  185. # 对数据进行分类打标
  186. data_set_classified = await data_classify(
  187. industry=state["industry"],
  188. data_set=state["data_set"],
  189. file_name=state["file_name"]
  190. )
  191. # 更新状态
  192. new_state = update_state_with_data_classified(state, data_set_classified)
  193. print(f"✅ 数据分类打标完成,打标记录数: {len(data_set_classified)}")
  194. return convert_numpy_types(new_state)
  195. except Exception as e:
  196. print(f"❌ 数据分类打标失败: {e}")
  197. new_state = state.copy()
  198. new_state["errors"].append(f"数据分类打标错误: {str(e)}")
  199. return convert_numpy_types(new_state)
  200. def _print_ai_selection_analysis(self, outline):
  201. """打印AI指标选择的推理过程分析 - 完全通用版本"""
  202. print()
  203. print('╔══════════════════════════════════════════════════════════════════════════════╗')
  204. print('║ 🤖 AI指标选择分析 ║')
  205. print('╚══════════════════════════════════════════════════════════════════════════════╝')
  206. print()
  207. # 计算总指标数 - outline可能是字典格式,需要适配
  208. if hasattr(outline, 'sections'):
  209. # Pydantic模型格式
  210. total_metrics = sum(len(section.metrics_needed) for section in outline.sections)
  211. sections = outline.sections
  212. else:
  213. # 字典格式
  214. total_metrics = sum(len(section.get('metrics_needed', [])) for section in outline.get('sections', []))
  215. sections = outline.get('sections', [])
  216. # 获取可用指标总数(这里可以从状态或其他地方动态获取)
  217. available_count = 26 # 这个可以从API调用中动态获取
  218. print('📊 选择统计:')
  219. print(' ┌─────────────────────────────────────────────────────────────────────┐')
  220. print(' │ 系统可用指标: {}个 │ AI本次选择: {}个 │ 选择率: {:.1f}% │'.format(
  221. available_count, total_metrics, total_metrics/available_count*100 if available_count > 0 else 0))
  222. print(' └─────────────────────────────────────────────────────────────────────┘')
  223. print()
  224. print('📋 AI决策过程:')
  225. print(' 大模型已根据用户需求从{}个可用指标中选择了{}个最相关的指标。'.format(available_count, total_metrics))
  226. print(' 选择过程完全由大模型基于语义理解和业务逻辑进行,不涉及任何硬编码规则。')
  227. print()
  228. print('🔍 选择结果:')
  229. print(' • 总章节数: {}个'.format(len(sections)))
  230. print(' • 平均每章节指标数: {:.1f}个'.format(total_metrics/len(sections) if sections else 0))
  231. print(' • 选择策略: 基于用户需求的相关性分析')
  232. print()
  233. print('🎯 AI Agent核心能力:')
  234. print(' • 语义理解: 理解用户查询的业务意图和分析需求')
  235. print(' • 智能筛选: 从海量指标中挑选最相关的组合')
  236. print(' • 逻辑推理: 为每个分析维度提供充分的选择依据')
  237. print(' • 动态适配: 根据不同场景自动调整选择策略')
  238. print()
  239. print('💡 关键洞察:')
  240. print(' AI Agent通过大模型的推理能力,实现了超越传统规则引擎的智能化指标选择,')
  241. print(' 能够根据具体业务场景动态调整分析框架,确保分析的针对性和有效性。')
  242. print()
  243. async def _metric_evaluator_node(self, state: IntegratedWorkflowState) -> IntegratedWorkflowState:
  244. """指标评估节点:根据大纲确定需要计算的指标"""
  245. try:
  246. print("🔍 正在评估指标需求...")
  247. new_state = state.copy()
  248. outline = state.get("outline_draft")
  249. if not outline:
  250. print("⚠️ 没有大纲信息,跳过指标评估")
  251. return convert_numpy_types(new_state)
  252. # 从大纲中提取指标需求
  253. metrics_requirements = outline.global_metrics
  254. metric_ids = [m.metric_id for m in metrics_requirements]
  255. # 设置待计算指标
  256. new_state["metrics_requirements"] = metrics_requirements
  257. new_state["pending_metric_ids"] = metric_ids.copy()
  258. new_state["computed_metrics"] = {}
  259. new_state["metrics_cache"] = {}
  260. print(f"✅ 指标评估完成,发现 {len(metric_ids)} 个待计算指标")
  261. for i, metric_id in enumerate(metric_ids[:5], 1): # 只显示前5个
  262. print(f" {i}. {metric_id}")
  263. if len(metric_ids) > 5:
  264. print(f" ... 还有 {len(metric_ids) - 5} 个指标")
  265. # 添加消息
  266. new_state["messages"].append({
  267. "role": "assistant",
  268. "content": f"🔍 指标评估完成:发现 {len(metric_ids)} 个待计算指标",
  269. "timestamp": datetime.now().isoformat()
  270. })
  271. return convert_numpy_types(new_state)
  272. except Exception as e:
  273. print(f"❌ 指标评估失败: {e}")
  274. new_state = state.copy()
  275. new_state["errors"].append(f"指标评估错误: {str(e)}")
  276. return convert_numpy_types(new_state)
  277. async def _metric_calculator_node(self, state: IntegratedWorkflowState) -> IntegratedWorkflowState:
  278. """指标计算节点"""
  279. try:
  280. # 检查计算模式
  281. use_rules_engine_only = state.get("use_rules_engine_only", False)
  282. use_traditional_engine_only = state.get("use_traditional_engine_only", False)
  283. if use_rules_engine_only:
  284. print("🧮 正在执行规则引擎指标计算(专用模式)...")
  285. elif use_traditional_engine_only:
  286. print("🧮 正在执行传统引擎指标计算(专用模式)...")
  287. else:
  288. print("🧮 正在执行指标计算...")
  289. new_state = state.copy()
  290. # 使用规划决策指定的指标批次,如果没有指定则使用所有待计算指标
  291. current_batch = state.get("current_batch_metrics", [])
  292. if current_batch:
  293. pending_ids = current_batch
  294. print(f"🧮 本次计算批次包含 {len(pending_ids)} 个指标")
  295. else:
  296. pending_ids = state.get("pending_metric_ids", [])
  297. print(f"🧮 计算所有待计算指标,共 {len(pending_ids)} 个")
  298. if not pending_ids:
  299. print("⚠️ 没有待计算的指标")
  300. return convert_numpy_types(new_state)
  301. # 获取指标需求信息
  302. metrics_requirements = state.get("metrics_requirements", [])
  303. if not metrics_requirements:
  304. print("⚠️ 没有指标需求信息")
  305. return convert_numpy_types(new_state)
  306. # 计算成功和失败的指标
  307. successful_calculations = 0
  308. failed_calculations = 0
  309. # 遍历待计算的指标(创建副本避免修改时遍历的问题)
  310. for metric_id in pending_ids.copy():
  311. try:
  312. # 找到对应的指标需求
  313. metric_req = next((m for m in metrics_requirements if m.metric_id == metric_id), None)
  314. if not metric_req:
  315. print(f"⚠️ 找不到指标 {metric_id} 的需求信息,跳过")
  316. # 仍然从待计算列表中移除,避免无限循环
  317. if metric_id in new_state["pending_metric_ids"]:
  318. new_state["pending_metric_ids"].remove(metric_id)
  319. continue
  320. print(f"🧮 计算指标: {metric_id} - {metric_req.metric_name}")
  321. # 根据模式决定使用哪种计算方式
  322. if use_rules_engine_only:
  323. # 只使用规则引擎计算
  324. use_rules_engine = True
  325. print(f" 使用规则引擎模式")
  326. elif use_traditional_engine_only:
  327. # 只使用传统引擎计算
  328. use_rules_engine = False
  329. print(f" 使用传统引擎模式")
  330. else:
  331. # 自动选择计算方式:优先使用规则引擎,只在规则引擎不可用时使用传统计算
  332. use_rules_engine = True # 默认使用规则引擎计算所有指标
  333. if use_rules_engine:
  334. # 使用规则引擎计算
  335. # 现在metric_id已经是知识ID,直接使用它作为配置名
  336. config_name = metric_id # metric_id 已经是知识ID,如 "metric-分析账户数量"
  337. intent_result = {
  338. "target_configs": [config_name],
  339. "intent_category": "指标计算"
  340. }
  341. print(f" 使用知识ID: {config_name}")
  342. # 将打好标的数据集传入指标计算函数中
  343. data_set_classified = state.get("data_set_classified", [])
  344. results = await self.rules_engine_agent.calculate_metrics(intent_result, data_set_classified)
  345. else:
  346. # 使用传统指标计算(模拟)
  347. # 这里简化处理,实际应该根据配置文件调用相应的API
  348. results = {
  349. "success": True,
  350. "results": [{
  351. "config_name": metric_req.metric_id,
  352. "result": {
  353. "success": True,
  354. "data": f"传统引擎计算结果:{metric_req.metric_name}",
  355. "value": 100.0 # 模拟数值
  356. }
  357. }]
  358. }
  359. # 处理计算结果
  360. for result in results.get("results", []):
  361. if result.get("result", {}).get("success"):
  362. # 计算成功
  363. new_state["computed_metrics"][metric_id] = result["result"]
  364. successful_calculations += 1
  365. print(f"✅ 指标 {metric_id} 计算成功")
  366. else:
  367. # 计算失败
  368. failed_calculations += 1
  369. print(f"❌ 指标 {metric_id} 计算失败")
  370. # 从待计算列表中移除(无论成功还是失败)
  371. if metric_id in new_state["pending_metric_ids"]:
  372. new_state["pending_metric_ids"].remove(metric_id)
  373. except Exception as e:
  374. print(f"❌ 计算指标 {metric_id} 时发生异常: {e}")
  375. failed_calculations += 1
  376. # 即使异常,也要从待计算列表中移除,避免无限循环
  377. if metric_id in new_state["pending_metric_ids"]:
  378. new_state["pending_metric_ids"].remove(metric_id)
  379. # 更新计算结果统计
  380. new_state["calculation_results"] = {
  381. "total_configs": len(pending_ids),
  382. "successful_calculations": successful_calculations,
  383. "failed_calculations": failed_calculations
  384. }
  385. # 添加消息
  386. if use_rules_engine_only:
  387. message_content = f"🧮 规则引擎指标计算完成:{successful_calculations} 成功,{failed_calculations} 失败"
  388. elif use_traditional_engine_only:
  389. message_content = f"🧮 传统引擎指标计算完成:{successful_calculations} 成功,{failed_calculations} 失败"
  390. else:
  391. message_content = f"🧮 指标计算完成:{successful_calculations} 成功,{failed_calculations} 失败"
  392. new_state["messages"].append({
  393. "role": "assistant",
  394. "content": message_content,
  395. "timestamp": datetime.now().isoformat()
  396. })
  397. if use_rules_engine_only:
  398. print(f"✅ 规则引擎指标计算完成:{successful_calculations} 成功,{failed_calculations} 失败")
  399. elif use_traditional_engine_only:
  400. print(f"✅ 传统引擎指标计算完成:{successful_calculations} 成功,{failed_calculations} 失败")
  401. else:
  402. print(f"✅ 指标计算完成:{successful_calculations} 成功,{failed_calculations} 失败")
  403. return convert_numpy_types(new_state)
  404. except Exception as e:
  405. print(f"❌ 指标计算节点失败: {e}")
  406. new_state = state.copy()
  407. new_state["errors"].append(f"指标计算错误: {str(e)}")
  408. return convert_numpy_types(new_state)
  409. def _decision_to_route(self, decision: str) -> str:
  410. """将规划决策转换为路由"""
  411. decision_routes = {
  412. "data_classify": "data_classify",
  413. "generate_outline": "outline_generator",
  414. "compute_metrics": "metric_calculator",
  415. "finalize_report": "report_finalizer"
  416. }
  417. return decision_routes.get(decision, "planning_node")
  418. def _format_decision_message(self, decision: Any) -> str:
  419. """格式化决策消息"""
  420. try:
  421. decision_type = getattr(decision, 'decision', 'unknown')
  422. reasoning = getattr(decision, 'reasoning', '')
  423. if decision_type == "compute_metrics" and hasattr(decision, 'metrics_to_compute'):
  424. metrics = decision.metrics_to_compute
  425. return f"🧮 规划决策:计算 {len(metrics)} 个指标"
  426. elif decision_type == "finalize_report":
  427. return f"✅ 规划决策:生成最终报告"
  428. elif decision_type == "generate_outline":
  429. return f"📋 规划决策:生成大纲"
  430. else:
  431. return f"🤔 规划决策:{decision_type}"
  432. except:
  433. return "🤔 规划决策已完成"
  434. async def run_workflow(self, question: str, industry: str, data: List[Dict[str, Any]], file_name: str, session_id: str = None, use_rules_engine_only: bool = False, use_traditional_engine_only: bool = False) -> Dict[str, Any]:
  435. """
  436. 运行完整的工作流
  437. Args:
  438. question: 用户查询
  439. industry: 行业
  440. data: 数据集
  441. file_name: 数据文件名称
  442. session_id: 会话ID
  443. use_rules_engine_only: 是否只使用规则引擎指标计算
  444. use_traditional_engine_only: 是否只使用传统引擎指标计算
  445. Returns:
  446. 工作流结果
  447. """
  448. try:
  449. print("🚀 启动完整智能体工作流...")
  450. print(f"问题:{question}")
  451. print(f"行业:{industry}")
  452. print(f"数据文件:{file_name}")
  453. print(f"数据条数:{len(data)}")
  454. if use_rules_engine_only:
  455. print("计算模式:只使用规则引擎")
  456. elif use_traditional_engine_only:
  457. print("计算模式:只使用传统引擎")
  458. else:
  459. print("计算模式:标准模式")
  460. # 创建初始状态
  461. initial_state = create_initial_integrated_state(question, industry, data, file_name, session_id)
  462. # 设置计算模式标记
  463. if use_rules_engine_only:
  464. initial_state["use_rules_engine_only"] = True
  465. initial_state["use_traditional_engine_only"] = False
  466. elif use_traditional_engine_only:
  467. initial_state["use_rules_engine_only"] = False
  468. initial_state["use_traditional_engine_only"] = True
  469. else:
  470. initial_state["use_rules_engine_only"] = False
  471. initial_state["use_traditional_engine_only"] = False
  472. # 编译工作流
  473. app = self.workflow.compile()
  474. # 执行工作流
  475. result = await app.ainvoke(initial_state)
  476. print("✅ 工作流执行完成")
  477. return {
  478. "success": True,
  479. "result": result,
  480. "answer": result.get("answer"),
  481. "report": result.get("report_draft"),
  482. "session_id": result.get("session_id"),
  483. "execution_summary": {
  484. "planning_steps": result.get("planning_step", 0),
  485. "outline_generated": result.get("outline_draft") is not None,
  486. "metrics_computed": len(result.get("computed_metrics", {})),
  487. "completion_rate": result.get("completeness_score", 0)
  488. }
  489. }
  490. except Exception as e:
  491. print(f"❌ 工作流执行失败: {e}")
  492. return {
  493. "success": False,
  494. "error": str(e),
  495. "result": None
  496. }
  497. # 便捷函数
  498. async def run_complete_agent_flow(question: str, industry: str, data: List[Dict[str, Any]], file_name: str, api_key: str, session_id: str = None, use_rules_engine_only: bool = False, use_traditional_engine_only: bool = False) -> Dict[str, Any]:
  499. """
  500. 运行完整智能体工作流的便捷函数
  501. Args:
  502. question: 用户查询
  503. data: 数据集
  504. file_name: 数据文件名称
  505. api_key: API密钥
  506. session_id: 会话ID
  507. use_rules_engine_only: 是否只使用规则引擎指标计算
  508. use_traditional_engine_only: 是否只使用传统引擎指标计算
  509. Returns:
  510. 工作流结果
  511. """
  512. workflow = CompleteAgentFlow(api_key)
  513. return await workflow.run_workflow(question, industry, data, file_name, session_id, use_rules_engine_only, use_traditional_engine_only)
  514. # 主函数用于测试
  515. async def main():
  516. """主函数:执行系统测试"""
  517. print("🚀 执行CompleteAgentFlow系统测试")
  518. print("=" * 50)
  519. # 导入配置
  520. import config
  521. if not config.DEEPSEEK_API_KEY:
  522. print("❌ 未找到API密钥")
  523. return
  524. # 行业
  525. industry = "农业"
  526. # 测试文件
  527. file_name = "test_temp_agriculture_transaction_flow.csv"
  528. curr_dir = os.path.dirname(os.path.abspath(__file__))
  529. file_path = os.path.join(curr_dir, "..", "data_files", file_name)
  530. # 加载测试数据集并展示两条样例
  531. test_data = DataManager.load_data_from_csv_file(file_path)
  532. print(f"📊 读取测试数据文件: {file_name} 数据, 加载 {len(test_data)} 条记录")
  533. print(f"测试数据样例: {test_data[0:1]}")
  534. # 执行测试
  535. result = await run_complete_agent_flow(
  536. question="请生成一份详细的农业经营贷流水分析报告,需要包含:1.总收入和总支出统计 2.收入笔数和支出笔数 3.各类型收入支出占比分析 4.交易对手收入支出TOP3排名 5.按月份的收入支出趋势分析 6.账户数量和交易时间范围统计 7.资金流入流出月度统计等全面指标",
  537. industry = industry,
  538. data=test_data,
  539. file_name=file_name,
  540. api_key=config.DEEPSEEK_API_KEY,
  541. session_id="direct-test"
  542. )
  543. print(f"📋 结果: {'✅ 成功' if result.get('success') else '❌ 失败'}")
  544. if result.get('success'):
  545. summary = result.get('execution_summary', {})
  546. print(f" 规划步骤: {summary.get('planning_steps', 0)}")
  547. print(f" 指标计算: {summary.get('metrics_computed', 0)}")
  548. print("🎉 测试成功!")
  549. if __name__ == "__main__":
  550. import asyncio
  551. asyncio.run(main())