| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155 |
- from __future__ import annotations
- import inspect
- from typing import Any, TypeVar
- from typing_extensions import TypeGuard
- import pydantic
- from .._types import NOT_GIVEN
- from .._utils import is_dict as _is_dict, is_list
- from .._compat import PYDANTIC_V1, model_json_schema
- _T = TypeVar("_T")
- def to_strict_json_schema(model: type[pydantic.BaseModel] | pydantic.TypeAdapter[Any]) -> dict[str, Any]:
- if inspect.isclass(model) and is_basemodel_type(model):
- schema = model_json_schema(model)
- elif (not PYDANTIC_V1) and isinstance(model, pydantic.TypeAdapter):
- schema = model.json_schema()
- else:
- raise TypeError(f"Non BaseModel types are only supported with Pydantic v2 - {model}")
- return _ensure_strict_json_schema(schema, path=(), root=schema)
- def _ensure_strict_json_schema(
- json_schema: object,
- *,
- path: tuple[str, ...],
- root: dict[str, object],
- ) -> dict[str, Any]:
- """Mutates the given JSON schema to ensure it conforms to the `strict` standard
- that the API expects.
- """
- if not is_dict(json_schema):
- raise TypeError(f"Expected {json_schema} to be a dictionary; path={path}")
- defs = json_schema.get("$defs")
- if is_dict(defs):
- for def_name, def_schema in defs.items():
- _ensure_strict_json_schema(def_schema, path=(*path, "$defs", def_name), root=root)
- definitions = json_schema.get("definitions")
- if is_dict(definitions):
- for definition_name, definition_schema in definitions.items():
- _ensure_strict_json_schema(definition_schema, path=(*path, "definitions", definition_name), root=root)
- typ = json_schema.get("type")
- if typ == "object" and "additionalProperties" not in json_schema:
- json_schema["additionalProperties"] = False
- # object types
- # { 'type': 'object', 'properties': { 'a': {...} } }
- properties = json_schema.get("properties")
- if is_dict(properties):
- json_schema["required"] = [prop for prop in properties.keys()]
- json_schema["properties"] = {
- key: _ensure_strict_json_schema(prop_schema, path=(*path, "properties", key), root=root)
- for key, prop_schema in properties.items()
- }
- # arrays
- # { 'type': 'array', 'items': {...} }
- items = json_schema.get("items")
- if is_dict(items):
- json_schema["items"] = _ensure_strict_json_schema(items, path=(*path, "items"), root=root)
- # unions
- any_of = json_schema.get("anyOf")
- if is_list(any_of):
- json_schema["anyOf"] = [
- _ensure_strict_json_schema(variant, path=(*path, "anyOf", str(i)), root=root)
- for i, variant in enumerate(any_of)
- ]
- # intersections
- all_of = json_schema.get("allOf")
- if is_list(all_of):
- if len(all_of) == 1:
- json_schema.update(_ensure_strict_json_schema(all_of[0], path=(*path, "allOf", "0"), root=root))
- json_schema.pop("allOf")
- else:
- json_schema["allOf"] = [
- _ensure_strict_json_schema(entry, path=(*path, "allOf", str(i)), root=root)
- for i, entry in enumerate(all_of)
- ]
- # strip `None` defaults as there's no meaningful distinction here
- # the schema will still be `nullable` and the model will default
- # to using `None` anyway
- if json_schema.get("default", NOT_GIVEN) is None:
- json_schema.pop("default")
- # we can't use `$ref`s if there are also other properties defined, e.g.
- # `{"$ref": "...", "description": "my description"}`
- #
- # so we unravel the ref
- # `{"type": "string", "description": "my description"}`
- ref = json_schema.get("$ref")
- if ref and has_more_than_n_keys(json_schema, 1):
- assert isinstance(ref, str), f"Received non-string $ref - {ref}"
- resolved = resolve_ref(root=root, ref=ref)
- if not is_dict(resolved):
- raise ValueError(f"Expected `$ref: {ref}` to resolved to a dictionary but got {resolved}")
- # properties from the json schema take priority over the ones on the `$ref`
- json_schema.update({**resolved, **json_schema})
- json_schema.pop("$ref")
- # Since the schema expanded from `$ref` might not have `additionalProperties: false` applied,
- # we call `_ensure_strict_json_schema` again to fix the inlined schema and ensure it's valid.
- return _ensure_strict_json_schema(json_schema, path=path, root=root)
- return json_schema
- def resolve_ref(*, root: dict[str, object], ref: str) -> object:
- if not ref.startswith("#/"):
- raise ValueError(f"Unexpected $ref format {ref!r}; Does not start with #/")
- path = ref[2:].split("/")
- resolved = root
- for key in path:
- value = resolved[key]
- assert is_dict(value), f"encountered non-dictionary entry while resolving {ref} - {resolved}"
- resolved = value
- return resolved
- def is_basemodel_type(typ: type) -> TypeGuard[type[pydantic.BaseModel]]:
- if not inspect.isclass(typ):
- return False
- return issubclass(typ, pydantic.BaseModel)
- def is_dataclass_like_type(typ: type) -> bool:
- """Returns True if the given type likely used `@pydantic.dataclass`"""
- return hasattr(typ, "__pydantic_config__")
- def is_dict(obj: object) -> TypeGuard[dict[str, object]]:
- # just pretend that we know there are only `str` keys
- # as that check is not worth the performance cost
- return _is_dict(obj)
- def has_more_than_n_keys(obj: dict[str, object], n: int) -> bool:
- i = 0
- for _ in obj.keys():
- i += 1
- if i > n:
- return True
- return False
|