| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893 |
- """This module contains related classes and functions for validation."""
- from __future__ import annotations as _annotations
- import dataclasses
- import sys
- import warnings
- from functools import partialmethod
- from types import FunctionType
- from typing import TYPE_CHECKING, Annotated, Any, Callable, Literal, TypeVar, Union, cast, overload
- from pydantic_core import PydanticUndefined, core_schema
- from typing_extensions import Self, TypeAlias
- from ._internal import _decorators, _generics, _internal_dataclass
- from .annotated_handlers import GetCoreSchemaHandler
- from .errors import PydanticUserError
- from .version import version_short
- from .warnings import ArbitraryTypeWarning, PydanticDeprecatedSince212
- if sys.version_info < (3, 11):
- from typing_extensions import Protocol
- else:
- from typing import Protocol
- _inspect_validator = _decorators.inspect_validator
- @dataclasses.dataclass(frozen=True, **_internal_dataclass.slots_true)
- class AfterValidator:
- """!!! abstract "Usage Documentation"
- [field *after* validators](../concepts/validators.md#field-after-validator)
- A metadata class that indicates that a validation should be applied **after** the inner validation logic.
- Attributes:
- func: The validator function.
- Example:
- ```python
- from typing import Annotated
- from pydantic import AfterValidator, BaseModel, ValidationError
- MyInt = Annotated[int, AfterValidator(lambda v: v + 1)]
- class Model(BaseModel):
- a: MyInt
- print(Model(a=1).a)
- #> 2
- try:
- Model(a='a')
- except ValidationError as e:
- print(e.json(indent=2))
- '''
- [
- {
- "type": "int_parsing",
- "loc": [
- "a"
- ],
- "msg": "Input should be a valid integer, unable to parse string as an integer",
- "input": "a",
- "url": "https://errors.pydantic.dev/2/v/int_parsing"
- }
- ]
- '''
- ```
- """
- func: core_schema.NoInfoValidatorFunction | core_schema.WithInfoValidatorFunction
- def __get_pydantic_core_schema__(self, source_type: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema:
- schema = handler(source_type)
- info_arg = _inspect_validator(self.func, mode='after', type='field')
- if info_arg:
- func = cast(core_schema.WithInfoValidatorFunction, self.func)
- return core_schema.with_info_after_validator_function(func, schema=schema)
- else:
- func = cast(core_schema.NoInfoValidatorFunction, self.func)
- return core_schema.no_info_after_validator_function(func, schema=schema)
- @classmethod
- def _from_decorator(cls, decorator: _decorators.Decorator[_decorators.FieldValidatorDecoratorInfo]) -> Self:
- return cls(func=decorator.func)
- @dataclasses.dataclass(frozen=True, **_internal_dataclass.slots_true)
- class BeforeValidator:
- """!!! abstract "Usage Documentation"
- [field *before* validators](../concepts/validators.md#field-before-validator)
- A metadata class that indicates that a validation should be applied **before** the inner validation logic.
- Attributes:
- func: The validator function.
- json_schema_input_type: The input type used to generate the appropriate
- JSON Schema (in validation mode). The actual input type is `Any`.
- Example:
- ```python
- from typing import Annotated
- from pydantic import BaseModel, BeforeValidator
- MyInt = Annotated[int, BeforeValidator(lambda v: v + 1)]
- class Model(BaseModel):
- a: MyInt
- print(Model(a=1).a)
- #> 2
- try:
- Model(a='a')
- except TypeError as e:
- print(e)
- #> can only concatenate str (not "int") to str
- ```
- """
- func: core_schema.NoInfoValidatorFunction | core_schema.WithInfoValidatorFunction
- json_schema_input_type: Any = PydanticUndefined
- def __get_pydantic_core_schema__(self, source_type: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema:
- schema = handler(source_type)
- input_schema = (
- None
- if self.json_schema_input_type is PydanticUndefined
- else handler.generate_schema(self.json_schema_input_type)
- )
- info_arg = _inspect_validator(self.func, mode='before', type='field')
- if info_arg:
- func = cast(core_schema.WithInfoValidatorFunction, self.func)
- return core_schema.with_info_before_validator_function(
- func,
- schema=schema,
- json_schema_input_schema=input_schema,
- )
- else:
- func = cast(core_schema.NoInfoValidatorFunction, self.func)
- return core_schema.no_info_before_validator_function(
- func, schema=schema, json_schema_input_schema=input_schema
- )
- @classmethod
- def _from_decorator(cls, decorator: _decorators.Decorator[_decorators.FieldValidatorDecoratorInfo]) -> Self:
- return cls(
- func=decorator.func,
- json_schema_input_type=decorator.info.json_schema_input_type,
- )
- @dataclasses.dataclass(frozen=True, **_internal_dataclass.slots_true)
- class PlainValidator:
- """!!! abstract "Usage Documentation"
- [field *plain* validators](../concepts/validators.md#field-plain-validator)
- A metadata class that indicates that a validation should be applied **instead** of the inner validation logic.
- !!! note
- Before v2.9, `PlainValidator` wasn't always compatible with JSON Schema generation for `mode='validation'`.
- You can now use the `json_schema_input_type` argument to specify the input type of the function
- to be used in the JSON schema when `mode='validation'` (the default). See the example below for more details.
- Attributes:
- func: The validator function.
- json_schema_input_type: The input type used to generate the appropriate
- JSON Schema (in validation mode). The actual input type is `Any`.
- Example:
- ```python
- from typing import Annotated, Union
- from pydantic import BaseModel, PlainValidator
- def validate(v: object) -> int:
- if not isinstance(v, (int, str)):
- raise ValueError(f'Expected int or str, go {type(v)}')
- return int(v) + 1
- MyInt = Annotated[
- int,
- PlainValidator(validate, json_schema_input_type=Union[str, int]), # (1)!
- ]
- class Model(BaseModel):
- a: MyInt
- print(Model(a='1').a)
- #> 2
- print(Model(a=1).a)
- #> 2
- ```
- 1. In this example, we've specified the `json_schema_input_type` as `Union[str, int]` which indicates to the JSON schema
- generator that in validation mode, the input type for the `a` field can be either a [`str`][] or an [`int`][].
- """
- func: core_schema.NoInfoValidatorFunction | core_schema.WithInfoValidatorFunction
- json_schema_input_type: Any = Any
- def __get_pydantic_core_schema__(self, source_type: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema:
- # Note that for some valid uses of PlainValidator, it is not possible to generate a core schema for the
- # source_type, so calling `handler(source_type)` will error, which prevents us from generating a proper
- # serialization schema. To work around this for use cases that will not involve serialization, we simply
- # catch any PydanticSchemaGenerationError that may be raised while attempting to build the serialization schema
- # and abort any attempts to handle special serialization.
- from pydantic import PydanticSchemaGenerationError
- try:
- schema = handler(source_type)
- # TODO if `schema['serialization']` is one of `'include-exclude-dict/sequence',
- # schema validation will fail. That's why we use 'type ignore' comments below.
- serialization = schema.get(
- 'serialization',
- core_schema.wrap_serializer_function_ser_schema(
- function=lambda v, h: h(v),
- schema=schema,
- return_schema=handler.generate_schema(source_type),
- ),
- )
- except PydanticSchemaGenerationError:
- serialization = None
- input_schema = handler.generate_schema(self.json_schema_input_type)
- info_arg = _inspect_validator(self.func, mode='plain', type='field')
- if info_arg:
- func = cast(core_schema.WithInfoValidatorFunction, self.func)
- return core_schema.with_info_plain_validator_function(
- func,
- serialization=serialization, # pyright: ignore[reportArgumentType]
- json_schema_input_schema=input_schema,
- )
- else:
- func = cast(core_schema.NoInfoValidatorFunction, self.func)
- return core_schema.no_info_plain_validator_function(
- func,
- serialization=serialization, # pyright: ignore[reportArgumentType]
- json_schema_input_schema=input_schema,
- )
- @classmethod
- def _from_decorator(cls, decorator: _decorators.Decorator[_decorators.FieldValidatorDecoratorInfo]) -> Self:
- return cls(
- func=decorator.func,
- json_schema_input_type=decorator.info.json_schema_input_type,
- )
- @dataclasses.dataclass(frozen=True, **_internal_dataclass.slots_true)
- class WrapValidator:
- """!!! abstract "Usage Documentation"
- [field *wrap* validators](../concepts/validators.md#field-wrap-validator)
- A metadata class that indicates that a validation should be applied **around** the inner validation logic.
- Attributes:
- func: The validator function.
- json_schema_input_type: The input type used to generate the appropriate
- JSON Schema (in validation mode). The actual input type is `Any`.
- ```python
- from datetime import datetime
- from typing import Annotated
- from pydantic import BaseModel, ValidationError, WrapValidator
- def validate_timestamp(v, handler):
- if v == 'now':
- # we don't want to bother with further validation, just return the new value
- return datetime.now()
- try:
- return handler(v)
- except ValidationError:
- # validation failed, in this case we want to return a default value
- return datetime(2000, 1, 1)
- MyTimestamp = Annotated[datetime, WrapValidator(validate_timestamp)]
- class Model(BaseModel):
- a: MyTimestamp
- print(Model(a='now').a)
- #> 2032-01-02 03:04:05.000006
- print(Model(a='invalid').a)
- #> 2000-01-01 00:00:00
- ```
- """
- func: core_schema.NoInfoWrapValidatorFunction | core_schema.WithInfoWrapValidatorFunction
- json_schema_input_type: Any = PydanticUndefined
- def __get_pydantic_core_schema__(self, source_type: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema:
- schema = handler(source_type)
- input_schema = (
- None
- if self.json_schema_input_type is PydanticUndefined
- else handler.generate_schema(self.json_schema_input_type)
- )
- info_arg = _inspect_validator(self.func, mode='wrap', type='field')
- if info_arg:
- func = cast(core_schema.WithInfoWrapValidatorFunction, self.func)
- return core_schema.with_info_wrap_validator_function(
- func,
- schema=schema,
- json_schema_input_schema=input_schema,
- )
- else:
- func = cast(core_schema.NoInfoWrapValidatorFunction, self.func)
- return core_schema.no_info_wrap_validator_function(
- func,
- schema=schema,
- json_schema_input_schema=input_schema,
- )
- @classmethod
- def _from_decorator(cls, decorator: _decorators.Decorator[_decorators.FieldValidatorDecoratorInfo]) -> Self:
- return cls(
- func=decorator.func,
- json_schema_input_type=decorator.info.json_schema_input_type,
- )
- if TYPE_CHECKING:
- class _OnlyValueValidatorClsMethod(Protocol):
- def __call__(self, cls: Any, value: Any, /) -> Any: ...
- class _V2ValidatorClsMethod(Protocol):
- def __call__(self, cls: Any, value: Any, info: core_schema.ValidationInfo[Any], /) -> Any: ...
- class _OnlyValueWrapValidatorClsMethod(Protocol):
- def __call__(self, cls: Any, value: Any, handler: core_schema.ValidatorFunctionWrapHandler, /) -> Any: ...
- class _V2WrapValidatorClsMethod(Protocol):
- def __call__(
- self,
- cls: Any,
- value: Any,
- handler: core_schema.ValidatorFunctionWrapHandler,
- info: core_schema.ValidationInfo[Any],
- /,
- ) -> Any: ...
- _V2Validator = Union[
- _V2ValidatorClsMethod,
- core_schema.WithInfoValidatorFunction,
- _OnlyValueValidatorClsMethod,
- core_schema.NoInfoValidatorFunction,
- ]
- _V2WrapValidator = Union[
- _V2WrapValidatorClsMethod,
- core_schema.WithInfoWrapValidatorFunction,
- _OnlyValueWrapValidatorClsMethod,
- core_schema.NoInfoWrapValidatorFunction,
- ]
- _PartialClsOrStaticMethod: TypeAlias = Union[classmethod[Any, Any, Any], staticmethod[Any, Any], partialmethod[Any]]
- _V2BeforeAfterOrPlainValidatorType = TypeVar(
- '_V2BeforeAfterOrPlainValidatorType',
- bound=Union[_V2Validator, _PartialClsOrStaticMethod],
- )
- _V2WrapValidatorType = TypeVar('_V2WrapValidatorType', bound=Union[_V2WrapValidator, _PartialClsOrStaticMethod])
- FieldValidatorModes: TypeAlias = Literal['before', 'after', 'wrap', 'plain']
- @overload
- def field_validator(
- field: str,
- /,
- *fields: str,
- mode: Literal['wrap'],
- check_fields: bool | None = ...,
- json_schema_input_type: Any = ...,
- ) -> Callable[[_V2WrapValidatorType], _V2WrapValidatorType]: ...
- @overload
- def field_validator(
- field: str,
- /,
- *fields: str,
- mode: Literal['before', 'plain'],
- check_fields: bool | None = ...,
- json_schema_input_type: Any = ...,
- ) -> Callable[[_V2BeforeAfterOrPlainValidatorType], _V2BeforeAfterOrPlainValidatorType]: ...
- @overload
- def field_validator(
- field: str,
- /,
- *fields: str,
- mode: Literal['after'] = ...,
- check_fields: bool | None = ...,
- ) -> Callable[[_V2BeforeAfterOrPlainValidatorType], _V2BeforeAfterOrPlainValidatorType]: ...
- def field_validator(
- field: str,
- /,
- *fields: str,
- mode: FieldValidatorModes = 'after',
- check_fields: bool | None = None,
- json_schema_input_type: Any = PydanticUndefined,
- ) -> Callable[[Any], Any]:
- """!!! abstract "Usage Documentation"
- [field validators](../concepts/validators.md#field-validators)
- Decorate methods on the class indicating that they should be used to validate fields.
- Example usage:
- ```python
- from typing import Any
- from pydantic import (
- BaseModel,
- ValidationError,
- field_validator,
- )
- class Model(BaseModel):
- a: str
- @field_validator('a')
- @classmethod
- def ensure_foobar(cls, v: Any):
- if 'foobar' not in v:
- raise ValueError('"foobar" not found in a')
- return v
- print(repr(Model(a='this is foobar good')))
- #> Model(a='this is foobar good')
- try:
- Model(a='snap')
- except ValidationError as exc_info:
- print(exc_info)
- '''
- 1 validation error for Model
- a
- Value error, "foobar" not found in a [type=value_error, input_value='snap', input_type=str]
- '''
- ```
- For more in depth examples, see [Field Validators](../concepts/validators.md#field-validators).
- Args:
- field: The first field the `field_validator` should be called on; this is separate
- from `fields` to ensure an error is raised if you don't pass at least one.
- *fields: Additional field(s) the `field_validator` should be called on.
- mode: Specifies whether to validate the fields before or after validation.
- check_fields: Whether to check that the fields actually exist on the model.
- json_schema_input_type: The input type of the function. This is only used to generate
- the appropriate JSON Schema (in validation mode) and can only specified
- when `mode` is either `'before'`, `'plain'` or `'wrap'`.
- Returns:
- A decorator that can be used to decorate a function to be used as a field_validator.
- Raises:
- PydanticUserError:
- - If `@field_validator` is used bare (with no fields).
- - If the args passed to `@field_validator` as fields are not strings.
- - If `@field_validator` applied to instance methods.
- """
- if isinstance(field, FunctionType):
- raise PydanticUserError(
- '`@field_validator` should be used with fields and keyword arguments, not bare. '
- "E.g. usage should be `@validator('<field_name>', ...)`",
- code='validator-no-fields',
- )
- if mode not in ('before', 'plain', 'wrap') and json_schema_input_type is not PydanticUndefined:
- raise PydanticUserError(
- f"`json_schema_input_type` can't be used when mode is set to {mode!r}",
- code='validator-input-type',
- )
- if json_schema_input_type is PydanticUndefined and mode == 'plain':
- json_schema_input_type = Any
- fields = field, *fields
- if not all(isinstance(field, str) for field in fields):
- raise PydanticUserError(
- '`@field_validator` fields should be passed as separate string args. '
- "E.g. usage should be `@validator('<field_name_1>', '<field_name_2>', ...)`",
- code='validator-invalid-fields',
- )
- def dec(
- f: Callable[..., Any] | staticmethod[Any, Any] | classmethod[Any, Any, Any],
- ) -> _decorators.PydanticDescriptorProxy[Any]:
- if _decorators.is_instance_method_from_sig(f):
- raise PydanticUserError(
- '`@field_validator` cannot be applied to instance methods', code='validator-instance-method'
- )
- # auto apply the @classmethod decorator
- f = _decorators.ensure_classmethod_based_on_signature(f)
- dec_info = _decorators.FieldValidatorDecoratorInfo(
- fields=fields, mode=mode, check_fields=check_fields, json_schema_input_type=json_schema_input_type
- )
- return _decorators.PydanticDescriptorProxy(f, dec_info)
- return dec
- _ModelType = TypeVar('_ModelType')
- _ModelTypeCo = TypeVar('_ModelTypeCo', covariant=True)
- class ModelWrapValidatorHandler(core_schema.ValidatorFunctionWrapHandler, Protocol[_ModelTypeCo]):
- """`@model_validator` decorated function handler argument type. This is used when `mode='wrap'`."""
- def __call__( # noqa: D102
- self,
- value: Any,
- outer_location: str | int | None = None,
- /,
- ) -> _ModelTypeCo: # pragma: no cover
- ...
- class ModelWrapValidatorWithoutInfo(Protocol[_ModelType]):
- """A `@model_validator` decorated function signature.
- This is used when `mode='wrap'` and the function does not have info argument.
- """
- def __call__( # noqa: D102
- self,
- cls: type[_ModelType],
- # this can be a dict, a model instance
- # or anything else that gets passed to validate_python
- # thus validators _must_ handle all cases
- value: Any,
- handler: ModelWrapValidatorHandler[_ModelType],
- /,
- ) -> _ModelType: ...
- class ModelWrapValidator(Protocol[_ModelType]):
- """A `@model_validator` decorated function signature. This is used when `mode='wrap'`."""
- def __call__( # noqa: D102
- self,
- cls: type[_ModelType],
- # this can be a dict, a model instance
- # or anything else that gets passed to validate_python
- # thus validators _must_ handle all cases
- value: Any,
- handler: ModelWrapValidatorHandler[_ModelType],
- info: core_schema.ValidationInfo,
- /,
- ) -> _ModelType: ...
- class FreeModelBeforeValidatorWithoutInfo(Protocol):
- """A `@model_validator` decorated function signature.
- This is used when `mode='before'` and the function does not have info argument.
- """
- def __call__( # noqa: D102
- self,
- # this can be a dict, a model instance
- # or anything else that gets passed to validate_python
- # thus validators _must_ handle all cases
- value: Any,
- /,
- ) -> Any: ...
- class ModelBeforeValidatorWithoutInfo(Protocol):
- """A `@model_validator` decorated function signature.
- This is used when `mode='before'` and the function does not have info argument.
- """
- def __call__( # noqa: D102
- self,
- cls: Any,
- # this can be a dict, a model instance
- # or anything else that gets passed to validate_python
- # thus validators _must_ handle all cases
- value: Any,
- /,
- ) -> Any: ...
- class FreeModelBeforeValidator(Protocol):
- """A `@model_validator` decorated function signature. This is used when `mode='before'`."""
- def __call__( # noqa: D102
- self,
- # this can be a dict, a model instance
- # or anything else that gets passed to validate_python
- # thus validators _must_ handle all cases
- value: Any,
- info: core_schema.ValidationInfo[Any],
- /,
- ) -> Any: ...
- class ModelBeforeValidator(Protocol):
- """A `@model_validator` decorated function signature. This is used when `mode='before'`."""
- def __call__( # noqa: D102
- self,
- cls: Any,
- # this can be a dict, a model instance
- # or anything else that gets passed to validate_python
- # thus validators _must_ handle all cases
- value: Any,
- info: core_schema.ValidationInfo[Any],
- /,
- ) -> Any: ...
- ModelAfterValidatorWithoutInfo = Callable[[_ModelType], _ModelType]
- """A `@model_validator` decorated function signature. This is used when `mode='after'` and the function does not
- have info argument.
- """
- ModelAfterValidator = Callable[[_ModelType, core_schema.ValidationInfo[Any]], _ModelType]
- """A `@model_validator` decorated function signature. This is used when `mode='after'`."""
- _AnyModelWrapValidator = Union[ModelWrapValidator[_ModelType], ModelWrapValidatorWithoutInfo[_ModelType]]
- _AnyModelBeforeValidator = Union[
- FreeModelBeforeValidator, ModelBeforeValidator, FreeModelBeforeValidatorWithoutInfo, ModelBeforeValidatorWithoutInfo
- ]
- _AnyModelAfterValidator = Union[ModelAfterValidator[_ModelType], ModelAfterValidatorWithoutInfo[_ModelType]]
- @overload
- def model_validator(
- *,
- mode: Literal['wrap'],
- ) -> Callable[
- [_AnyModelWrapValidator[_ModelType]], _decorators.PydanticDescriptorProxy[_decorators.ModelValidatorDecoratorInfo]
- ]: ...
- @overload
- def model_validator(
- *,
- mode: Literal['before'],
- ) -> Callable[
- [_AnyModelBeforeValidator], _decorators.PydanticDescriptorProxy[_decorators.ModelValidatorDecoratorInfo]
- ]: ...
- @overload
- def model_validator(
- *,
- mode: Literal['after'],
- ) -> Callable[
- [_AnyModelAfterValidator[_ModelType]], _decorators.PydanticDescriptorProxy[_decorators.ModelValidatorDecoratorInfo]
- ]: ...
- def model_validator(
- *,
- mode: Literal['wrap', 'before', 'after'],
- ) -> Any:
- """!!! abstract "Usage Documentation"
- [Model Validators](../concepts/validators.md#model-validators)
- Decorate model methods for validation purposes.
- Example usage:
- ```python
- from typing_extensions import Self
- from pydantic import BaseModel, ValidationError, model_validator
- class Square(BaseModel):
- width: float
- height: float
- @model_validator(mode='after')
- def verify_square(self) -> Self:
- if self.width != self.height:
- raise ValueError('width and height do not match')
- return self
- s = Square(width=1, height=1)
- print(repr(s))
- #> Square(width=1.0, height=1.0)
- try:
- Square(width=1, height=2)
- except ValidationError as e:
- print(e)
- '''
- 1 validation error for Square
- Value error, width and height do not match [type=value_error, input_value={'width': 1, 'height': 2}, input_type=dict]
- '''
- ```
- For more in depth examples, see [Model Validators](../concepts/validators.md#model-validators).
- Args:
- mode: A required string literal that specifies the validation mode.
- It can be one of the following: 'wrap', 'before', or 'after'.
- Returns:
- A decorator that can be used to decorate a function to be used as a model validator.
- """
- def dec(f: Any) -> _decorators.PydanticDescriptorProxy[Any]:
- # auto apply the @classmethod decorator. NOTE: in V3, do not apply the conversion for 'after' validators:
- f = _decorators.ensure_classmethod_based_on_signature(f)
- if mode == 'after' and isinstance(f, classmethod):
- warnings.warn(
- category=PydanticDeprecatedSince212,
- message=(
- "Using `@model_validator` with mode='after' on a classmethod is deprecated. Instead, use an instance method. "
- f'See the documentation at https://docs.pydantic.dev/{version_short()}/concepts/validators/#model-after-validator.'
- ),
- stacklevel=2,
- )
- dec_info = _decorators.ModelValidatorDecoratorInfo(mode=mode)
- return _decorators.PydanticDescriptorProxy(f, dec_info)
- return dec
- AnyType = TypeVar('AnyType')
- if TYPE_CHECKING:
- # If we add configurable attributes to IsInstance, we'd probably need to stop hiding it from type checkers like this
- InstanceOf = Annotated[AnyType, ...] # `IsInstance[Sequence]` will be recognized by type checkers as `Sequence`
- else:
- @dataclasses.dataclass(**_internal_dataclass.slots_true)
- class InstanceOf:
- '''Generic type for annotating a type that is an instance of a given class.
- Example:
- ```python
- from pydantic import BaseModel, InstanceOf
- class Foo:
- ...
- class Bar(BaseModel):
- foo: InstanceOf[Foo]
- Bar(foo=Foo())
- try:
- Bar(foo=42)
- except ValidationError as e:
- print(e)
- """
- [
- │ {
- │ │ 'type': 'is_instance_of',
- │ │ 'loc': ('foo',),
- │ │ 'msg': 'Input should be an instance of Foo',
- │ │ 'input': 42,
- │ │ 'ctx': {'class': 'Foo'},
- │ │ 'url': 'https://errors.pydantic.dev/0.38.0/v/is_instance_of'
- │ }
- ]
- """
- ```
- '''
- @classmethod
- def __class_getitem__(cls, item: AnyType) -> AnyType:
- return Annotated[item, cls()]
- @classmethod
- def __get_pydantic_core_schema__(cls, source: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema:
- from pydantic import PydanticSchemaGenerationError
- # use the generic _origin_ as the second argument to isinstance when appropriate
- instance_of_schema = core_schema.is_instance_schema(_generics.get_origin(source) or source)
- try:
- # Try to generate the "standard" schema, which will be used when loading from JSON
- original_schema = handler(source)
- except PydanticSchemaGenerationError:
- # If that fails, just produce a schema that can validate from python
- return instance_of_schema
- else:
- # Use the "original" approach to serialization
- instance_of_schema['serialization'] = core_schema.wrap_serializer_function_ser_schema(
- function=lambda v, h: h(v), schema=original_schema
- )
- return core_schema.json_or_python_schema(python_schema=instance_of_schema, json_schema=original_schema)
- __hash__ = object.__hash__
- if TYPE_CHECKING:
- SkipValidation = Annotated[AnyType, ...] # SkipValidation[list[str]] will be treated by type checkers as list[str]
- else:
- @dataclasses.dataclass(**_internal_dataclass.slots_true)
- class SkipValidation:
- """If this is applied as an annotation (e.g., via `x: Annotated[int, SkipValidation]`), validation will be
- skipped. You can also use `SkipValidation[int]` as a shorthand for `Annotated[int, SkipValidation]`.
- This can be useful if you want to use a type annotation for documentation/IDE/type-checking purposes,
- and know that it is safe to skip validation for one or more of the fields.
- Because this converts the validation schema to `any_schema`, subsequent annotation-applied transformations
- may not have the expected effects. Therefore, when used, this annotation should generally be the final
- annotation applied to a type.
- """
- def __class_getitem__(cls, item: Any) -> Any:
- return Annotated[item, SkipValidation()]
- @classmethod
- def __get_pydantic_core_schema__(cls, source: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema:
- with warnings.catch_warnings():
- warnings.simplefilter('ignore', ArbitraryTypeWarning)
- original_schema = handler(source)
- metadata = {'pydantic_js_annotation_functions': [lambda _c, h: h(original_schema)]}
- return core_schema.any_schema(
- metadata=metadata,
- serialization=core_schema.wrap_serializer_function_ser_schema(
- function=lambda v, h: h(v), schema=original_schema
- ),
- )
- __hash__ = object.__hash__
- _FromTypeT = TypeVar('_FromTypeT')
- class ValidateAs:
- """A helper class to validate a custom type from a type that is natively supported by Pydantic.
- Args:
- from_type: The type natively supported by Pydantic to use to perform validation.
- instantiation_hook: A callable taking the validated type as an argument, and returning
- the populated custom type.
- Example:
- ```python {lint="skip"}
- from typing import Annotated
- from pydantic import BaseModel, TypeAdapter, ValidateAs
- class MyCls:
- def __init__(self, a: int) -> None:
- self.a = a
- def __repr__(self) -> str:
- return f"MyCls(a={self.a})"
- class Model(BaseModel):
- a: int
- ta = TypeAdapter(
- Annotated[MyCls, ValidateAs(Model, lambda v: MyCls(a=v.a))]
- )
- print(ta.validate_python({'a': 1}))
- #> MyCls(a=1)
- ```
- """
- # TODO: make use of PEP 747
- def __init__(self, from_type: type[_FromTypeT], /, instantiation_hook: Callable[[_FromTypeT], Any]) -> None:
- self.from_type = from_type
- self.instantiation_hook = instantiation_hook
- def __get_pydantic_core_schema__(self, source: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema:
- schema = handler(self.from_type)
- return core_schema.no_info_after_validator_function(
- self.instantiation_hook,
- schema=schema,
- )
|