| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223 |
- """This is an educational implementation of the byte pair encoding algorithm."""
- from __future__ import annotations
- import collections
- import regex
- import tiktoken
- class SimpleBytePairEncoding:
- def __init__(self, *, pat_str: str, mergeable_ranks: dict[bytes, int]) -> None:
- """Creates an Encoding object."""
- # A regex pattern string that is used to split the input text
- self.pat_str = pat_str
- # A dictionary mapping token bytes to their ranks. The ranks correspond to merge priority
- self.mergeable_ranks = mergeable_ranks
- self._decoder = {token: token_bytes for token_bytes, token in mergeable_ranks.items()}
- self._pat = regex.compile(pat_str)
- def encode(self, text: str, visualise: str | None = "colour") -> list[int]:
- """Encodes a string into tokens.
- >>> enc.encode("hello world")
- [388, 372]
- """
- # Use the regex to split the text into (approximately) words
- words = self._pat.findall(text)
- tokens = []
- for word in words:
- # Turn each word into tokens, using the byte pair encoding algorithm
- word_bytes = word.encode("utf-8")
- word_tokens = bpe_encode(self.mergeable_ranks, word_bytes, visualise=visualise)
- tokens.extend(word_tokens)
- return tokens
- def decode_bytes(self, tokens: list[int]) -> bytes:
- """Decodes a list of tokens into bytes.
- >>> enc.decode_bytes([388, 372])
- b'hello world'
- """
- return b"".join(self._decoder[token] for token in tokens)
- def decode(self, tokens: list[int]) -> str:
- """Decodes a list of tokens into a string.
- Decoded bytes are not guaranteed to be valid UTF-8. In that case, we replace
- the invalid bytes with the replacement character "�".
- >>> enc.decode([388, 372])
- 'hello world'
- """
- return self.decode_bytes(tokens).decode("utf-8", errors="replace")
- def decode_tokens_bytes(self, tokens: list[int]) -> list[bytes]:
- """Decodes a list of tokens into a list of bytes.
- Useful for visualising how a string is tokenised.
- >>> enc.decode_tokens_bytes([388, 372])
- [b'hello', b' world']
- """
- return [self._decoder[token] for token in tokens]
- @staticmethod
- def train(training_data: str, vocab_size: int, pat_str: str):
- """Train a BPE tokeniser on some data!"""
- mergeable_ranks = bpe_train(data=training_data, vocab_size=vocab_size, pat_str=pat_str)
- return SimpleBytePairEncoding(pat_str=pat_str, mergeable_ranks=mergeable_ranks)
- @staticmethod
- def from_tiktoken(encoding):
- if isinstance(encoding, str):
- encoding = tiktoken.get_encoding(encoding)
- return SimpleBytePairEncoding(
- pat_str=encoding._pat_str, mergeable_ranks=encoding._mergeable_ranks
- )
- def bpe_encode(
- mergeable_ranks: dict[bytes, int], input: bytes, visualise: str | None = "colour"
- ) -> list[int]:
- parts = [bytes([b]) for b in input]
- while True:
- # See the intermediate merges play out!
- if visualise:
- if visualise in ["colour", "color"]:
- visualise_tokens(parts)
- elif visualise == "simple":
- print(parts)
- # Iterate over all pairs and find the pair we want to merge the most
- min_idx = None
- min_rank = None
- for i, pair in enumerate(zip(parts[:-1], parts[1:])):
- rank = mergeable_ranks.get(pair[0] + pair[1])
- if rank is not None and (min_rank is None or rank < min_rank):
- min_idx = i
- min_rank = rank
- # If there were no pairs we could merge, we're done!
- if min_rank is None:
- break
- assert min_idx is not None
- # Otherwise, merge that pair and leave the rest unchanged. Then repeat.
- parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2 :]
- if visualise:
- print()
- tokens = [mergeable_ranks[part] for part in parts]
- return tokens
- def bpe_train(
- data: str, vocab_size: int, pat_str: str, visualise: str | None = "colour"
- ) -> dict[bytes, int]:
- # First, add tokens for each individual byte value
- if vocab_size < 2**8:
- raise ValueError("vocab_size must be at least 256, so we can encode all bytes")
- ranks = {}
- for i in range(2**8):
- ranks[bytes([i])] = i
- # Splinter up our data into lists of bytes
- # data = "Hello world"
- # words = [
- # [b'H', b'e', b'l', b'l', b'o'],
- # [b' ', b'w', b'o', b'r', b'l', b'd']
- # ]
- words: list[list[bytes]] = [
- [bytes([b]) for b in word.encode("utf-8")] for word in regex.findall(pat_str, data)
- ]
- # Now, use our data to figure out which merges we should make
- while len(ranks) < vocab_size:
- # Find the most common pair. This will become our next token
- stats = collections.Counter()
- for piece in words:
- for pair in zip(piece[:-1], piece[1:]):
- stats[pair] += 1
- most_common_pair = max(stats, key=lambda x: stats[x])
- token_bytes = most_common_pair[0] + most_common_pair[1]
- token = len(ranks)
- # Add the new token!
- ranks[token_bytes] = token
- # Now merge that most common pair in all the words. That is, update our training data
- # to reflect our decision to make that pair into a new token.
- new_words = []
- for word in words:
- new_word = []
- i = 0
- while i < len(word) - 1:
- if (word[i], word[i + 1]) == most_common_pair:
- # We found our pair! Merge it
- new_word.append(token_bytes)
- i += 2
- else:
- new_word.append(word[i])
- i += 1
- if i == len(word) - 1:
- new_word.append(word[i])
- new_words.append(new_word)
- words = new_words
- # See the intermediate merges play out!
- if visualise:
- print(f"The current most common pair is {most_common_pair[0]} + {most_common_pair[1]}")
- print(f"So we made {token_bytes} our {len(ranks)}th token")
- if visualise in ["colour", "color"]:
- print("Now the first fifty words in our training data look like:")
- visualise_tokens([token for word in words[:50] for token in word])
- elif visualise == "simple":
- print("Now the first twenty words in our training data look like:")
- for word in words[:20]:
- print(word)
- print("\n")
- return ranks
- def visualise_tokens(token_values: list[bytes]) -> None:
- background = [f"\u001b[48;5;{i}m" for i in [167, 179, 185, 77, 80, 68, 134]]
- # If token boundaries do not occur at unicode character boundaries, it's unclear how best to
- # visualise the token. Here, we'll just use the unicode replacement character to represent some
- # fraction of a character.
- unicode_token_values = [x.decode("utf-8", errors="replace") for x in token_values]
- running_length = 0
- last_color = None
- for token in unicode_token_values:
- color = background[running_length % len(background)]
- if color == last_color:
- color = background[(running_length + 1) % len(background)]
- assert color != last_color
- last_color = color
- running_length += len(token)
- print(color + token, end="")
- print("\u001b[0m")
- def train_simple_encoding():
- gpt2_pattern = (
- r"""'s|'t|'re|'ve|'m|'ll|'d| ?[\p{L}]+| ?[\p{N}]+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
- )
- with open(__file__) as f:
- data = f.read()
- enc = SimpleBytePairEncoding.train(data, vocab_size=600, pat_str=gpt2_pattern)
- print("This is the sequence of merges performed in order to encode 'hello world':")
- tokens = enc.encode("hello world")
- assert enc.decode(tokens) == "hello world"
- assert enc.decode_bytes(tokens) == b"hello world"
- assert enc.decode_tokens_bytes(tokens) == [b"hello", b" world"]
- return enc
|