|
|
@@ -14,7 +14,7 @@ MFR_BASE_BATCH_SIZE = 16
|
|
|
|
|
|
|
|
|
class BatchAnalyze:
|
|
|
- def __init__(self, model_manager, batch_ratio: int, formula_enable, table_enable, enable_ocr_det_batch: bool = False):
|
|
|
+ def __init__(self, model_manager, batch_ratio: int, formula_enable, table_enable, enable_ocr_det_batch: bool = True):
|
|
|
self.batch_ratio = batch_ratio
|
|
|
self.formula_enable = formula_enable
|
|
|
self.table_enable = table_enable
|
|
|
@@ -150,17 +150,17 @@ class BatchAnalyze:
|
|
|
|
|
|
# 对每个分辨率组进行批处理
|
|
|
for group_key, group_crops in tqdm(resolution_groups.items(), desc=f"OCR-det {lang}"):
|
|
|
- raw_images = [crop_info[0] for crop_info in group_crops]
|
|
|
|
|
|
# 计算目标尺寸(组内最大尺寸,向上取整到32的倍数)
|
|
|
- max_h = max(img.shape[0] for img in raw_images)
|
|
|
- max_w = max(img.shape[1] for img in raw_images)
|
|
|
+ max_h = max(crop_info[0].shape[0] for crop_info in group_crops)
|
|
|
+ max_w = max(crop_info[0].shape[1] for crop_info in group_crops)
|
|
|
target_h = ((max_h + 32 - 1) // 32) * 32
|
|
|
target_w = ((max_w + 32 - 1) // 32) * 32
|
|
|
|
|
|
# 对所有图像进行padding到统一尺寸
|
|
|
batch_images = []
|
|
|
- for img in raw_images:
|
|
|
+ for crop_info in group_crops:
|
|
|
+ img = crop_info[0]
|
|
|
h, w = img.shape[:2]
|
|
|
# 创建目标尺寸的白色背景
|
|
|
padded_img = np.ones((target_h, target_w, 3), dtype=np.uint8) * 255
|
|
|
@@ -177,28 +177,38 @@ class BatchAnalyze:
|
|
|
for i, (crop_info, (dt_boxes, elapse)) in enumerate(zip(group_crops, batch_results)):
|
|
|
new_image, useful_list, ocr_res_list_dict, res, adjusted_mfdetrec_res, _lang = crop_info
|
|
|
|
|
|
- if dt_boxes is not None:
|
|
|
- # 构造OCR结果格式 - 每个box应该是4个点的列表
|
|
|
- ocr_res = [box.tolist() for box in dt_boxes]
|
|
|
+ if dt_boxes is not None and len(dt_boxes) > 0:
|
|
|
+ # 直接应用原始OCR流程中的关键处理步骤
|
|
|
+ from mineru.utils.ocr_utils import (
|
|
|
+ merge_det_boxes, update_det_boxes, sorted_boxes
|
|
|
+ )
|
|
|
+
|
|
|
+ # 1. 排序检测框
|
|
|
+ if len(dt_boxes) > 0:
|
|
|
+ dt_boxes_sorted = sorted_boxes(dt_boxes)
|
|
|
+ else:
|
|
|
+ dt_boxes_sorted = []
|
|
|
+
|
|
|
+ # 2. 合并相邻检测框
|
|
|
+ if dt_boxes_sorted:
|
|
|
+ dt_boxes_merged = merge_det_boxes(dt_boxes_sorted)
|
|
|
+ else:
|
|
|
+ dt_boxes_merged = []
|
|
|
+
|
|
|
+ # 3. 根据公式位置更新检测框(关键步骤!)
|
|
|
+ if dt_boxes_merged and adjusted_mfdetrec_res:
|
|
|
+ dt_boxes_final = update_det_boxes(dt_boxes_merged, adjusted_mfdetrec_res)
|
|
|
+ else:
|
|
|
+ dt_boxes_final = dt_boxes_merged
|
|
|
+
|
|
|
+ # 构造OCR结果格式
|
|
|
+ ocr_res = [box.tolist() if hasattr(box, 'tolist') else box for box in dt_boxes_final]
|
|
|
|
|
|
if ocr_res:
|
|
|
ocr_result_list = get_ocr_result_list(
|
|
|
ocr_res, useful_list, ocr_res_list_dict['ocr_enable'], new_image, _lang
|
|
|
)
|
|
|
|
|
|
- if res["category_id"] == 3:
|
|
|
- # ocr_result_list中所有bbox的面积之和
|
|
|
- ocr_res_area = sum(
|
|
|
- get_coords_and_area(ocr_res_item)[4] for ocr_res_item in ocr_result_list if 'poly' in ocr_res_item)
|
|
|
- # 求ocr_res_area和res的面积的比值
|
|
|
- res_area = get_coords_and_area(res)[4]
|
|
|
- if res_area > 0:
|
|
|
- ratio = ocr_res_area / res_area
|
|
|
- if ratio > 0.25:
|
|
|
- res["category_id"] = 1
|
|
|
- else:
|
|
|
- continue
|
|
|
-
|
|
|
ocr_res_list_dict['layout_res'].extend(ocr_result_list)
|
|
|
else:
|
|
|
# 原始单张处理模式
|
|
|
@@ -227,8 +237,9 @@ class BatchAnalyze:
|
|
|
|
|
|
# Integration results
|
|
|
if ocr_res:
|
|
|
- ocr_result_list = get_ocr_result_list(ocr_res, useful_list, ocr_res_list_dict['ocr_enable'],
|
|
|
- new_image, _lang)
|
|
|
+ ocr_result_list = get_ocr_result_list(
|
|
|
+ ocr_res, useful_list, ocr_res_list_dict['ocr_enable'],new_image, _lang
|
|
|
+ )
|
|
|
|
|
|
ocr_res_list_dict['layout_res'].extend(ocr_result_list)
|
|
|
|