|
|
@@ -38,12 +38,14 @@ class BatchAnalyze:
|
|
|
)
|
|
|
atom_model_manager = AtomModelSingleton()
|
|
|
|
|
|
+ pil_images = [image for image, _, _ in images_with_extra_info]
|
|
|
+
|
|
|
np_images = [np.asarray(image) for image, _, _ in images_with_extra_info]
|
|
|
|
|
|
# doclayout_yolo
|
|
|
|
|
|
images_layout_res += self.model.layout_model.batch_predict(
|
|
|
- np_images, YOLO_LAYOUT_BASE_BATCH_SIZE
|
|
|
+ pil_images, YOLO_LAYOUT_BASE_BATCH_SIZE
|
|
|
)
|
|
|
|
|
|
if self.formula_enable:
|
|
|
@@ -89,6 +91,7 @@ class BatchAnalyze:
|
|
|
# table_img, _ = crop_img(table_res, pil_img)
|
|
|
# bbox = (241, 208, 1475, 2019)
|
|
|
scale = 10/3
|
|
|
+ # scale = 1
|
|
|
crop_xmin, crop_ymin = int(table_res['poly'][0]), int(table_res['poly'][1])
|
|
|
crop_xmax, crop_ymax = int(table_res['poly'][4]), int(table_res['poly'][5])
|
|
|
bbox = (int(crop_xmin/scale), int(crop_ymin/scale), int(crop_xmax/scale), int(crop_ymax/scale))
|