|
|
@@ -0,0 +1,338 @@
|
|
|
+# Copyright (c) Opendatalab. All rights reserved.
|
|
|
+import copy
|
|
|
+import os
|
|
|
+import statistics
|
|
|
+import warnings
|
|
|
+from typing import List
|
|
|
+import torch
|
|
|
+from loguru import logger
|
|
|
+
|
|
|
+from mineru.backend.pipeline.config_reader import get_device, get_local_layoutreader_model_dir
|
|
|
+from mineru.utils.enum_class import BlockType
|
|
|
+
|
|
|
+
|
|
|
+def sort_blocks_by_bbox(blocks, page_w, page_h, footnote_blocks):
|
|
|
+
|
|
|
+ """获取所有line并计算正文line的高度"""
|
|
|
+ line_height = get_line_height(blocks)
|
|
|
+
|
|
|
+ """获取所有line并对line排序"""
|
|
|
+ sorted_bboxes = sort_lines_by_model(blocks, page_w, page_h, line_height, footnote_blocks)
|
|
|
+
|
|
|
+ """根据line的中位数算block的序列关系"""
|
|
|
+ blocks = cal_block_index(blocks, sorted_bboxes)
|
|
|
+
|
|
|
+ """将image和table的block还原回group形式参与后续流程"""
|
|
|
+ blocks = revert_group_blocks(blocks)
|
|
|
+
|
|
|
+ """重排block"""
|
|
|
+ sorted_blocks = sorted(blocks, key=lambda b: b['index'])
|
|
|
+
|
|
|
+ """block内重排(img和table的block内多个caption或footnote的排序)"""
|
|
|
+ for block in sorted_blocks:
|
|
|
+ if block['type'] in [BlockType.IMAGE, BlockType.TABLE]:
|
|
|
+ block['blocks'] = sorted(block['blocks'], key=lambda b: b['index'])
|
|
|
+
|
|
|
+ return sorted_blocks
|
|
|
+
|
|
|
+
|
|
|
+def get_line_height(blocks):
|
|
|
+ page_line_height_list = []
|
|
|
+ for block in blocks:
|
|
|
+ if block['type'] in [
|
|
|
+ BlockType.TEXT, BlockType.TITLE,
|
|
|
+ BlockType.IMAGE_CAPTION, BlockType.IMAGE_FOOTNOTE,
|
|
|
+ BlockType.TABLE_CAPTION, BlockType.TABLE_FOOTNOTE
|
|
|
+ ]:
|
|
|
+ for line in block['lines']:
|
|
|
+ bbox = line['bbox']
|
|
|
+ page_line_height_list.append(int(bbox[3] - bbox[1]))
|
|
|
+ if len(page_line_height_list) > 0:
|
|
|
+ return statistics.median(page_line_height_list)
|
|
|
+ else:
|
|
|
+ return 10
|
|
|
+
|
|
|
+
|
|
|
+def sort_lines_by_model(fix_blocks, page_w, page_h, line_height, footnote_blocks):
|
|
|
+ page_line_list = []
|
|
|
+
|
|
|
+ def add_lines_to_block(b):
|
|
|
+ line_bboxes = insert_lines_into_block(b['bbox'], line_height, page_w, page_h)
|
|
|
+ b['lines'] = []
|
|
|
+ for line_bbox in line_bboxes:
|
|
|
+ b['lines'].append({'bbox': line_bbox, 'spans': []})
|
|
|
+ page_line_list.extend(line_bboxes)
|
|
|
+
|
|
|
+ for block in fix_blocks:
|
|
|
+ if block['type'] in [
|
|
|
+ BlockType.TEXT, BlockType.TITLE,
|
|
|
+ BlockType.IMAGE_CAPTION, BlockType.IMAGE_FOOTNOTE,
|
|
|
+ BlockType.TABLE_CAPTION, BlockType.TABLE_FOOTNOTE
|
|
|
+ ]:
|
|
|
+ if len(block['lines']) == 0:
|
|
|
+ add_lines_to_block(block)
|
|
|
+ elif block['type'] in [BlockType.TITLE] and len(block['lines']) == 1 and (block['bbox'][3] - block['bbox'][1]) > line_height * 2:
|
|
|
+ block['real_lines'] = copy.deepcopy(block['lines'])
|
|
|
+ add_lines_to_block(block)
|
|
|
+ else:
|
|
|
+ for line in block['lines']:
|
|
|
+ bbox = line['bbox']
|
|
|
+ page_line_list.append(bbox)
|
|
|
+ elif block['type'] in [BlockType.IMAGE_BODY, BlockType.TABLE_BODY, BlockType.INTERLINE_EQUATION]:
|
|
|
+ block['real_lines'] = copy.deepcopy(block['lines'])
|
|
|
+ add_lines_to_block(block)
|
|
|
+
|
|
|
+ for block in footnote_blocks:
|
|
|
+ footnote_block = {'bbox': block[:4]}
|
|
|
+ add_lines_to_block(footnote_block)
|
|
|
+
|
|
|
+ if len(page_line_list) > 200: # layoutreader最高支持512line
|
|
|
+ return None
|
|
|
+
|
|
|
+ # 使用layoutreader排序
|
|
|
+ x_scale = 1000.0 / page_w
|
|
|
+ y_scale = 1000.0 / page_h
|
|
|
+ boxes = []
|
|
|
+ # logger.info(f"Scale: {x_scale}, {y_scale}, Boxes len: {len(page_line_list)}")
|
|
|
+ for left, top, right, bottom in page_line_list:
|
|
|
+ if left < 0:
|
|
|
+ logger.warning(
|
|
|
+ f'left < 0, left: {left}, right: {right}, top: {top}, bottom: {bottom}, page_w: {page_w}, page_h: {page_h}'
|
|
|
+ ) # noqa: E501
|
|
|
+ left = 0
|
|
|
+ if right > page_w:
|
|
|
+ logger.warning(
|
|
|
+ f'right > page_w, left: {left}, right: {right}, top: {top}, bottom: {bottom}, page_w: {page_w}, page_h: {page_h}'
|
|
|
+ ) # noqa: E501
|
|
|
+ right = page_w
|
|
|
+ if top < 0:
|
|
|
+ logger.warning(
|
|
|
+ f'top < 0, left: {left}, right: {right}, top: {top}, bottom: {bottom}, page_w: {page_w}, page_h: {page_h}'
|
|
|
+ ) # noqa: E501
|
|
|
+ top = 0
|
|
|
+ if bottom > page_h:
|
|
|
+ logger.warning(
|
|
|
+ f'bottom > page_h, left: {left}, right: {right}, top: {top}, bottom: {bottom}, page_w: {page_w}, page_h: {page_h}'
|
|
|
+ ) # noqa: E501
|
|
|
+ bottom = page_h
|
|
|
+
|
|
|
+ left = round(left * x_scale)
|
|
|
+ top = round(top * y_scale)
|
|
|
+ right = round(right * x_scale)
|
|
|
+ bottom = round(bottom * y_scale)
|
|
|
+ assert (
|
|
|
+ 1000 >= right >= left >= 0 and 1000 >= bottom >= top >= 0
|
|
|
+ ), f'Invalid box. right: {right}, left: {left}, bottom: {bottom}, top: {top}' # noqa: E126, E121
|
|
|
+ boxes.append([left, top, right, bottom])
|
|
|
+ model_manager = ModelSingleton()
|
|
|
+ model = model_manager.get_model('layoutreader')
|
|
|
+ with torch.no_grad():
|
|
|
+ orders = do_predict(boxes, model)
|
|
|
+ sorted_bboxes = [page_line_list[i] for i in orders]
|
|
|
+
|
|
|
+ return sorted_bboxes
|
|
|
+
|
|
|
+
|
|
|
+def insert_lines_into_block(block_bbox, line_height, page_w, page_h):
|
|
|
+ # block_bbox是一个元组(x0, y0, x1, y1),其中(x0, y0)是左下角坐标,(x1, y1)是右上角坐标
|
|
|
+ x0, y0, x1, y1 = block_bbox
|
|
|
+
|
|
|
+ block_height = y1 - y0
|
|
|
+ block_weight = x1 - x0
|
|
|
+
|
|
|
+ # 如果block高度小于n行正文,则直接返回block的bbox
|
|
|
+ if line_height * 2 < block_height:
|
|
|
+ if (
|
|
|
+ block_height > page_h * 0.25 and page_w * 0.5 > block_weight > page_w * 0.25
|
|
|
+ ): # 可能是双列结构,可以切细点
|
|
|
+ lines = int(block_height / line_height)
|
|
|
+ else:
|
|
|
+ # 如果block的宽度超过0.4页面宽度,则将block分成3行(是一种复杂布局,图不能切的太细)
|
|
|
+ if block_weight > page_w * 0.4:
|
|
|
+ lines = 3
|
|
|
+ elif block_weight > page_w * 0.25: # (可能是三列结构,也切细点)
|
|
|
+ lines = int(block_height / line_height)
|
|
|
+ else: # 判断长宽比
|
|
|
+ if block_height / block_weight > 1.2: # 细长的不分
|
|
|
+ return [[x0, y0, x1, y1]]
|
|
|
+ else: # 不细长的还是分成两行
|
|
|
+ lines = 2
|
|
|
+
|
|
|
+ line_height = (y1 - y0) / lines
|
|
|
+
|
|
|
+ # 确定从哪个y位置开始绘制线条
|
|
|
+ current_y = y0
|
|
|
+
|
|
|
+ # 用于存储线条的位置信息[(x0, y), ...]
|
|
|
+ lines_positions = []
|
|
|
+
|
|
|
+ for i in range(lines):
|
|
|
+ lines_positions.append([x0, current_y, x1, current_y + line_height])
|
|
|
+ current_y += line_height
|
|
|
+ return lines_positions
|
|
|
+
|
|
|
+ else:
|
|
|
+ return [[x0, y0, x1, y1]]
|
|
|
+
|
|
|
+
|
|
|
+def model_init(model_name: str):
|
|
|
+ from transformers import LayoutLMv3ForTokenClassification
|
|
|
+ device_name = get_device()
|
|
|
+ bf_16_support = False
|
|
|
+ if device_name.startswith("cuda"):
|
|
|
+ bf_16_support = torch.cuda.is_bf16_supported()
|
|
|
+ elif device_name.startswith("mps"):
|
|
|
+ bf_16_support = True
|
|
|
+
|
|
|
+ device = torch.device(device_name)
|
|
|
+ if model_name == 'layoutreader':
|
|
|
+ # 检测modelscope的缓存目录是否存在
|
|
|
+ layoutreader_model_dir = get_local_layoutreader_model_dir()
|
|
|
+ if os.path.exists(layoutreader_model_dir):
|
|
|
+ model = LayoutLMv3ForTokenClassification.from_pretrained(
|
|
|
+ layoutreader_model_dir
|
|
|
+ )
|
|
|
+ else:
|
|
|
+ logger.warning(
|
|
|
+ 'local layoutreader model not exists, use online model from huggingface'
|
|
|
+ )
|
|
|
+ model = LayoutLMv3ForTokenClassification.from_pretrained(
|
|
|
+ 'hantian/layoutreader'
|
|
|
+ )
|
|
|
+ if bf_16_support:
|
|
|
+ model.to(device).eval().bfloat16()
|
|
|
+ else:
|
|
|
+ model.to(device).eval()
|
|
|
+ else:
|
|
|
+ logger.error('model name not allow')
|
|
|
+ exit(1)
|
|
|
+ return model
|
|
|
+
|
|
|
+
|
|
|
+class ModelSingleton:
|
|
|
+ _instance = None
|
|
|
+ _models = {}
|
|
|
+
|
|
|
+ def __new__(cls, *args, **kwargs):
|
|
|
+ if cls._instance is None:
|
|
|
+ cls._instance = super().__new__(cls)
|
|
|
+ return cls._instance
|
|
|
+
|
|
|
+ def get_model(self, model_name: str):
|
|
|
+ if model_name not in self._models:
|
|
|
+ self._models[model_name] = model_init(model_name=model_name)
|
|
|
+ return self._models[model_name]
|
|
|
+
|
|
|
+
|
|
|
+def do_predict(boxes: List[List[int]], model) -> List[int]:
|
|
|
+ from mineru.model.reading_order.layout_reader import (
|
|
|
+ boxes2inputs, parse_logits, prepare_inputs)
|
|
|
+
|
|
|
+ with warnings.catch_warnings():
|
|
|
+ warnings.filterwarnings("ignore", category=FutureWarning, module="transformers")
|
|
|
+
|
|
|
+ inputs = boxes2inputs(boxes)
|
|
|
+ inputs = prepare_inputs(inputs, model)
|
|
|
+ logits = model(**inputs).logits.cpu().squeeze(0)
|
|
|
+ return parse_logits(logits, len(boxes))
|
|
|
+
|
|
|
+
|
|
|
+def cal_block_index(fix_blocks, sorted_bboxes):
|
|
|
+
|
|
|
+ if sorted_bboxes is not None:
|
|
|
+ # 使用layoutreader排序
|
|
|
+ for block in fix_blocks:
|
|
|
+ line_index_list = []
|
|
|
+ if len(block['lines']) == 0:
|
|
|
+ block['index'] = sorted_bboxes.index(block['bbox'])
|
|
|
+ else:
|
|
|
+ for line in block['lines']:
|
|
|
+ line['index'] = sorted_bboxes.index(line['bbox'])
|
|
|
+ line_index_list.append(line['index'])
|
|
|
+ median_value = statistics.median(line_index_list)
|
|
|
+ block['index'] = median_value
|
|
|
+
|
|
|
+ # 删除图表body block中的虚拟line信息, 并用real_lines信息回填
|
|
|
+ if block['type'] in [BlockType.IMAGE_BODY, BlockType.TABLE_BODY, BlockType.TITLE, BlockType.INTERLINE_EQUATION]:
|
|
|
+ if 'real_lines' in block:
|
|
|
+ block['virtual_lines'] = copy.deepcopy(block['lines'])
|
|
|
+ block['lines'] = copy.deepcopy(block['real_lines'])
|
|
|
+ del block['real_lines']
|
|
|
+ else:
|
|
|
+ # 使用xycut排序
|
|
|
+ block_bboxes = []
|
|
|
+ for block in fix_blocks:
|
|
|
+ # 如果block['bbox']任意值小于0,将其置为0
|
|
|
+ block['bbox'] = [max(0, x) for x in block['bbox']]
|
|
|
+ block_bboxes.append(block['bbox'])
|
|
|
+
|
|
|
+ # 删除图表body block中的虚拟line信息, 并用real_lines信息回填
|
|
|
+ if block['type'] in [BlockType.IMAGE_BODY, BlockType.TABLE_BODY, BlockType.TITLE, BlockType.INTERLINE_EQUATION]:
|
|
|
+ if 'real_lines' in block:
|
|
|
+ block['virtual_lines'] = copy.deepcopy(block['lines'])
|
|
|
+ block['lines'] = copy.deepcopy(block['real_lines'])
|
|
|
+ del block['real_lines']
|
|
|
+
|
|
|
+ import numpy as np
|
|
|
+ from mineru.model.reading_order.xycut import recursive_xy_cut
|
|
|
+
|
|
|
+ random_boxes = np.array(block_bboxes)
|
|
|
+ np.random.shuffle(random_boxes)
|
|
|
+ res = []
|
|
|
+ recursive_xy_cut(np.asarray(random_boxes).astype(int), np.arange(len(block_bboxes)), res)
|
|
|
+ assert len(res) == len(block_bboxes)
|
|
|
+ sorted_boxes = random_boxes[np.array(res)].tolist()
|
|
|
+
|
|
|
+ for i, block in enumerate(fix_blocks):
|
|
|
+ block['index'] = sorted_boxes.index(block['bbox'])
|
|
|
+
|
|
|
+ # 生成line index
|
|
|
+ sorted_blocks = sorted(fix_blocks, key=lambda b: b['index'])
|
|
|
+ line_inedx = 1
|
|
|
+ for block in sorted_blocks:
|
|
|
+ for line in block['lines']:
|
|
|
+ line['index'] = line_inedx
|
|
|
+ line_inedx += 1
|
|
|
+
|
|
|
+ return fix_blocks
|
|
|
+
|
|
|
+
|
|
|
+def revert_group_blocks(blocks):
|
|
|
+ image_groups = {}
|
|
|
+ table_groups = {}
|
|
|
+ new_blocks = []
|
|
|
+ for block in blocks:
|
|
|
+ if block['type'] in [BlockType.IMAGE_BODY, BlockType.IMAGE_CAPTION, BlockType.IMAGE_FOOTNOTE]:
|
|
|
+ group_id = block['group_id']
|
|
|
+ if group_id not in image_groups:
|
|
|
+ image_groups[group_id] = []
|
|
|
+ image_groups[group_id].append(block)
|
|
|
+ elif block['type'] in [BlockType.TABLE_BODY, BlockType.TABLE_CAPTION, BlockType.TABLE_FOOTNOTE]:
|
|
|
+ group_id = block['group_id']
|
|
|
+ if group_id not in table_groups:
|
|
|
+ table_groups[group_id] = []
|
|
|
+ table_groups[group_id].append(block)
|
|
|
+ else:
|
|
|
+ new_blocks.append(block)
|
|
|
+
|
|
|
+ for group_id, blocks in image_groups.items():
|
|
|
+ new_blocks.append(process_block_list(blocks, BlockType.IMAGE_BODY, BlockType.IMAGE))
|
|
|
+
|
|
|
+ for group_id, blocks in table_groups.items():
|
|
|
+ new_blocks.append(process_block_list(blocks, BlockType.TABLE_BODY, BlockType.TABLE))
|
|
|
+
|
|
|
+ return new_blocks
|
|
|
+
|
|
|
+
|
|
|
+def process_block_list(blocks, body_type, block_type):
|
|
|
+ indices = [block['index'] for block in blocks]
|
|
|
+ median_index = statistics.median(indices)
|
|
|
+
|
|
|
+ body_bbox = next((block['bbox'] for block in blocks if block.get('type') == body_type), [])
|
|
|
+
|
|
|
+ return {
|
|
|
+ 'type': block_type,
|
|
|
+ 'bbox': body_bbox,
|
|
|
+ 'blocks': blocks,
|
|
|
+ 'index': median_index,
|
|
|
+ }
|