|
|
@@ -0,0 +1,175 @@
|
|
|
+
|
|
|
+流水线管道
|
|
|
+===========
|
|
|
+
|
|
|
+
|
|
|
+极简示例
|
|
|
+^^^^^^^^
|
|
|
+
|
|
|
+.. code:: python
|
|
|
+
|
|
|
+ import os
|
|
|
+
|
|
|
+ from magic_pdf.data.data_reader_writer import FileBasedDataWriter, FileBasedDataReader
|
|
|
+ from magic_pdf.data.dataset import PymuDocDataset
|
|
|
+ from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
|
|
|
+
|
|
|
+ # args
|
|
|
+ pdf_file_name = "abc.pdf" # replace with the real pdf path
|
|
|
+ name_without_suff = pdf_file_name.split(".")[0]
|
|
|
+
|
|
|
+ # prepare env
|
|
|
+ local_image_dir, local_md_dir = "output/images", "output"
|
|
|
+ image_dir = str(os.path.basename(local_image_dir))
|
|
|
+
|
|
|
+ os.makedirs(local_image_dir, exist_ok=True)
|
|
|
+
|
|
|
+ image_writer, md_writer = FileBasedDataWriter(local_image_dir), FileBasedDataWriter(
|
|
|
+ local_md_dir
|
|
|
+ )
|
|
|
+ image_dir = str(os.path.basename(local_image_dir))
|
|
|
+
|
|
|
+ # read bytes
|
|
|
+ reader1 = FileBasedDataReader("")
|
|
|
+ pdf_bytes = reader1.read(pdf_file_name) # read the pdf content
|
|
|
+
|
|
|
+ # proc
|
|
|
+ ## Create Dataset Instance
|
|
|
+ ds = PymuDocDataset(pdf_bytes)
|
|
|
+
|
|
|
+ ds.apply(doc_analyze, ocr=True).pipe_ocr_mode(image_writer).dump_md(md_writer, f"{name_without_suff}.md", image_dir)
|
|
|
+
|
|
|
+
|
|
|
+运行以上的代码,会得到如下的结果
|
|
|
+
|
|
|
+.. code:: bash
|
|
|
+
|
|
|
+ output/
|
|
|
+ ├── abc.md
|
|
|
+ └── images
|
|
|
+
|
|
|
+
|
|
|
+除去初始化环境,如建立目录、导入依赖库等逻辑。真正执行将 `pdf` 转换为 `markdown` 的代码片段如下
|
|
|
+
|
|
|
+.. code::
|
|
|
+
|
|
|
+ # read bytes
|
|
|
+ reader1 = FileBasedDataReader("")
|
|
|
+ pdf_bytes = reader1.read(pdf_file_name) # read the pdf content
|
|
|
+
|
|
|
+ # proc
|
|
|
+ ## Create Dataset Instance
|
|
|
+ ds = PymuDocDataset(pdf_bytes)
|
|
|
+
|
|
|
+ ds.apply(doc_analyze, ocr=True).pipe_ocr_mode(image_writer).dump_md(md_writer, f"{name_without_suff}.md", image_dir)
|
|
|
+
|
|
|
+
|
|
|
+`ds.apply(doc_analyze, ocr=True)` 会生成 `InferenceResult` 对象。 `InferenceResult` 的对象执行 `pipe_ocr_mode` 方法会生成 `PipeResult` 对象。
|
|
|
+`PipeResult` 对象执行 `dump_md` 会在指定位置生成 `markdown` 文件。
|
|
|
+
|
|
|
+
|
|
|
+pipeline 的执行过程如下图所示
|
|
|
+
|
|
|
+.. image:: ../../_static/image/pipeline.drawio.svg
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+.. admonition:: Tip
|
|
|
+ :class: tip
|
|
|
+
|
|
|
+ 要想获得更多有关 Dataset、InferenceResult、PipeResult 的使用示例子,请前往 :doc:`../quick_start/to_markdown`
|
|
|
+
|
|
|
+ 要想获得更多有关 Dataset、InferenceResult、PipeResult 的细节信息请前往英文版 MinerU 文档进行查看!
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+管道组合
|
|
|
+^^^^^^^^^
|
|
|
+
|
|
|
+.. code:: python
|
|
|
+
|
|
|
+ class Dataset(ABC):
|
|
|
+ @abstractmethod
|
|
|
+ def apply(self, proc: Callable, *args, **kwargs):
|
|
|
+ """Apply callable method which.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ proc (Callable): invoke proc as follows:
|
|
|
+ proc(self, *args, **kwargs)
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ Any: return the result generated by proc
|
|
|
+ """
|
|
|
+ pass
|
|
|
+
|
|
|
+ class InferenceResult(InferenceResultBase):
|
|
|
+
|
|
|
+ def apply(self, proc: Callable, *args, **kwargs):
|
|
|
+ """Apply callable method which.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ proc (Callable): invoke proc as follows:
|
|
|
+ proc(inference_result, *args, **kwargs)
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ Any: return the result generated by proc
|
|
|
+ """
|
|
|
+ return proc(copy.deepcopy(self._infer_res), *args, **kwargs)
|
|
|
+
|
|
|
+ def pipe_ocr_mode(
|
|
|
+ self,
|
|
|
+ imageWriter: DataWriter,
|
|
|
+ start_page_id=0,
|
|
|
+ end_page_id=None,
|
|
|
+ debug_mode=False,
|
|
|
+ lang=None,
|
|
|
+ ) -> PipeResult:
|
|
|
+ pass
|
|
|
+
|
|
|
+ class PipeResult:
|
|
|
+ def apply(self, proc: Callable, *args, **kwargs):
|
|
|
+ """Apply callable method which.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ proc (Callable): invoke proc as follows:
|
|
|
+ proc(pipeline_result, *args, **kwargs)
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ Any: return the result generated by proc
|
|
|
+ """
|
|
|
+ return proc(copy.deepcopy(self._pipe_res), *args, **kwargs)
|
|
|
+
|
|
|
+`Dataset` 、 `InferenceResult` 和 `PipeResult` 类均有 `apply` method。可用于组合不同阶段的运算过程。
|
|
|
+如下所示,`MinerU` 提供一套组合这些类的计算过程。
|
|
|
+
|
|
|
+.. code:: python
|
|
|
+
|
|
|
+ # proc
|
|
|
+ ## Create Dataset Instance
|
|
|
+ ds = PymuDocDataset(pdf_bytes)
|
|
|
+
|
|
|
+ ds.apply(doc_analyze, ocr=True).pipe_ocr_mode(image_writer).dump_md(md_writer, f"{name_without_suff}.md", image_dir)
|
|
|
+
|
|
|
+用户可以根据的需求,自行实现一些组合用的函数。比如用户通过 `apply` 方法实现一个统计 `pdf` 文件页数的功能。
|
|
|
+
|
|
|
+.. code:: python
|
|
|
+
|
|
|
+ from magic_pdf.data.data_reader_writer import FileBasedDataReader
|
|
|
+ from magic_pdf.data.dataset import PymuDocDataset
|
|
|
+
|
|
|
+ # args
|
|
|
+ pdf_file_name = "abc.pdf" # replace with the real pdf path
|
|
|
+
|
|
|
+ # read bytes
|
|
|
+ reader1 = FileBasedDataReader("")
|
|
|
+ pdf_bytes = reader1.read(pdf_file_name) # read the pdf content
|
|
|
+
|
|
|
+ # proc
|
|
|
+ ## Create Dataset Instance
|
|
|
+ ds = PymuDocDataset(pdf_bytes)
|
|
|
+
|
|
|
+ def count_page(ds)-> int:
|
|
|
+ return len(ds)
|
|
|
+
|
|
|
+ print("page number: ", ds.apply(count_page)) # will output the page count of `abc.pdf`
|