|
|
@@ -1,9 +1,8 @@
|
|
|
"""
|
|
|
-布局处理的公共工具类
|
|
|
包含两个MagicModel类中重复使用的方法和逻辑
|
|
|
"""
|
|
|
-from typing import List, Dict, Any, Union
|
|
|
-from mineru.utils.boxbase import bbox_relative_pos, calculate_iou, bbox_distance, is_in
|
|
|
+from typing import List, Dict, Any, Callable
|
|
|
+from mineru.utils.boxbase import bbox_distance, is_in
|
|
|
|
|
|
|
|
|
def reduct_overlap(bboxes: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
|
|
@@ -27,101 +26,48 @@ def reduct_overlap(bboxes: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
|
|
return [bboxes[i] for i in range(N) if keep[i]]
|
|
|
|
|
|
|
|
|
-def bbox_distance_with_relative_check(bbox1: List[int], bbox2: List[int]) -> float:
|
|
|
- """
|
|
|
- 计算两个bbox之间的距离,考虑相对位置约束
|
|
|
-
|
|
|
- Args:
|
|
|
- bbox1: 第一个bbox [x1, y1, x2, y2]
|
|
|
- bbox2: 第二个bbox [x1, y1, x2, y2]
|
|
|
-
|
|
|
- Returns:
|
|
|
- 距离值,如果不满足条件返回无穷大
|
|
|
- """
|
|
|
- left, right, bottom, top = bbox_relative_pos(bbox1, bbox2)
|
|
|
- flags = [left, right, bottom, top]
|
|
|
- count = sum([1 if v else 0 for v in flags])
|
|
|
- if count > 1:
|
|
|
- return float('inf')
|
|
|
- if left or right:
|
|
|
- l1 = bbox1[3] - bbox1[1]
|
|
|
- l2 = bbox2[3] - bbox2[1]
|
|
|
- else:
|
|
|
- l1 = bbox1[2] - bbox1[0]
|
|
|
- l2 = bbox2[2] - bbox2[0]
|
|
|
-
|
|
|
- if l2 > l1 and (l2 - l1) / l1 > 0.3:
|
|
|
- return float('inf')
|
|
|
-
|
|
|
- return bbox_distance(bbox1, bbox2)
|
|
|
-
|
|
|
-
|
|
|
def tie_up_category_by_distance_v3(
|
|
|
- data_source: Union[List[Dict], Dict],
|
|
|
- subject_category_filter,
|
|
|
- object_category_filter,
|
|
|
- extract_bbox_func=None,
|
|
|
- extract_score_func=None,
|
|
|
- create_item_func=None
|
|
|
-) -> List[Dict[str, Any]]:
|
|
|
+ get_subjects_func: Callable,
|
|
|
+ get_objects_func: Callable,
|
|
|
+ extract_subject_func: Callable = None,
|
|
|
+ extract_object_func: Callable = None
|
|
|
+):
|
|
|
"""
|
|
|
- 基于距离关联不同类型的区块/元素
|
|
|
+ 通用的类别关联方法,用于将主体对象与客体对象进行关联
|
|
|
|
|
|
- Args:
|
|
|
- data_source: 数据源,可以是列表或包含layout_dets的字典
|
|
|
- subject_category_filter: 主体类别过滤函数或值
|
|
|
- object_category_filter: 对象类别过滤函数或值
|
|
|
- extract_bbox_func: 提取bbox的函数,默认使用'bbox'键
|
|
|
- extract_score_func: 提取score的函数,默认使用'score'键
|
|
|
- create_item_func: 创建返回项的函数
|
|
|
+ 参数:
|
|
|
+ get_subjects_func: 函数,提取主体对象
|
|
|
+ get_objects_func: 函数,提取客体对象
|
|
|
+ extract_subject_func: 函数,自定义提取主体属性(默认使用bbox和其他属性)
|
|
|
+ extract_object_func: 函数,自定义提取客体属性(默认使用bbox和其他属性)
|
|
|
|
|
|
- Returns:
|
|
|
- 关联结果列表
|
|
|
+ 返回:
|
|
|
+ 关联后的对象列表
|
|
|
"""
|
|
|
- # 默认函数
|
|
|
- if extract_bbox_func is None:
|
|
|
- extract_bbox_func = lambda x: x['bbox']
|
|
|
- if extract_score_func is None:
|
|
|
- extract_score_func = lambda x: x['score']
|
|
|
- if create_item_func is None:
|
|
|
- create_item_func = lambda x: {'bbox': extract_bbox_func(x), 'score': extract_score_func(x)}
|
|
|
-
|
|
|
- # 处理数据源
|
|
|
- if isinstance(data_source, dict) and 'layout_dets' in data_source:
|
|
|
- items = data_source['layout_dets']
|
|
|
- else:
|
|
|
- items = data_source
|
|
|
+ subjects = get_subjects_func()
|
|
|
+ objects = get_objects_func()
|
|
|
|
|
|
- # 过滤主体和对象
|
|
|
- if callable(subject_category_filter):
|
|
|
- subjects = list(filter(subject_category_filter, items))
|
|
|
- else:
|
|
|
- subjects = list(filter(lambda x: x.get('category_id') == subject_category_filter or x.get('type') == subject_category_filter, items))
|
|
|
-
|
|
|
- if callable(object_category_filter):
|
|
|
- objects = list(filter(object_category_filter, items))
|
|
|
- else:
|
|
|
- objects = list(filter(lambda x: x.get('category_id') == object_category_filter or x.get('type') == object_category_filter, items))
|
|
|
-
|
|
|
- # 转换为标准格式并去重
|
|
|
- subjects = reduct_overlap([create_item_func(x) for x in subjects])
|
|
|
- objects = reduct_overlap([create_item_func(x) for x in objects])
|
|
|
+ # 如果没有提供自定义提取函数,使用默认函数
|
|
|
+ if extract_subject_func is None:
|
|
|
+ extract_subject_func = lambda x: x
|
|
|
+ if extract_object_func is None:
|
|
|
+ extract_object_func = lambda x: x
|
|
|
|
|
|
ret = []
|
|
|
N, M = len(subjects), len(objects)
|
|
|
- subjects.sort(key=lambda x: extract_bbox_func(x)[0] ** 2 + extract_bbox_func(x)[1] ** 2)
|
|
|
- objects.sort(key=lambda x: extract_bbox_func(x)[0] ** 2 + extract_bbox_func(x)[1] ** 2)
|
|
|
+ subjects.sort(key=lambda x: x["bbox"][0] ** 2 + x["bbox"][1] ** 2)
|
|
|
+ objects.sort(key=lambda x: x["bbox"][0] ** 2 + x["bbox"][1] ** 2)
|
|
|
|
|
|
OBJ_IDX_OFFSET = 10000
|
|
|
SUB_BIT_KIND, OBJ_BIT_KIND = 0, 1
|
|
|
|
|
|
- all_boxes_with_idx = [(i, SUB_BIT_KIND, extract_bbox_func(sub)[0], extract_bbox_func(sub)[1]) for i, sub in enumerate(subjects)] + \
|
|
|
- [(i + OBJ_IDX_OFFSET, OBJ_BIT_KIND, extract_bbox_func(obj)[0], extract_bbox_func(obj)[1]) for i, obj in enumerate(objects)]
|
|
|
+ all_boxes_with_idx = [(i, SUB_BIT_KIND, sub["bbox"][0], sub["bbox"][1]) for i, sub in enumerate(subjects)] + [
|
|
|
+ (i + OBJ_IDX_OFFSET, OBJ_BIT_KIND, obj["bbox"][0], obj["bbox"][1]) for i, obj in enumerate(objects)
|
|
|
+ ]
|
|
|
seen_idx = set()
|
|
|
seen_sub_idx = set()
|
|
|
|
|
|
- seen_sub_idx_len = len(seen_sub_idx)
|
|
|
- while N > seen_sub_idx_len:
|
|
|
+ while N > len(seen_sub_idx):
|
|
|
candidates = []
|
|
|
for idx, kind, x0, y0 in all_boxes_with_idx:
|
|
|
if idx in seen_idx:
|
|
|
@@ -136,10 +82,10 @@ def tie_up_category_by_distance_v3(
|
|
|
candidates.sort(key=lambda x: (x[2] - left_x) ** 2 + (x[3] - top_y) ** 2)
|
|
|
|
|
|
fst_idx, fst_kind, left_x, top_y = candidates[0]
|
|
|
- fst_bbox = extract_bbox_func(subjects[fst_idx]) if fst_kind == SUB_BIT_KIND else extract_bbox_func(objects[fst_idx - OBJ_IDX_OFFSET])
|
|
|
+ fst_bbox = subjects[fst_idx]['bbox'] if fst_kind == SUB_BIT_KIND else objects[fst_idx - OBJ_IDX_OFFSET]['bbox']
|
|
|
candidates.sort(
|
|
|
- key=lambda x: bbox_distance(fst_bbox, extract_bbox_func(subjects[x[0]])) if x[1] == SUB_BIT_KIND else bbox_distance(
|
|
|
- fst_bbox, extract_bbox_func(objects[x[0] - OBJ_IDX_OFFSET])))
|
|
|
+ key=lambda x: bbox_distance(fst_bbox, subjects[x[0]]['bbox']) if x[1] == SUB_BIT_KIND else bbox_distance(
|
|
|
+ fst_bbox, objects[x[0] - OBJ_IDX_OFFSET]['bbox']))
|
|
|
nxt = None
|
|
|
|
|
|
for i in range(1, len(candidates)):
|
|
|
@@ -154,12 +100,12 @@ def tie_up_category_by_distance_v3(
|
|
|
else:
|
|
|
sub_idx, obj_idx = nxt[0], fst_idx - OBJ_IDX_OFFSET
|
|
|
|
|
|
- pair_dis = bbox_distance(extract_bbox_func(subjects[sub_idx]), extract_bbox_func(objects[obj_idx]))
|
|
|
- nearest_dis = float('inf')
|
|
|
+ pair_dis = bbox_distance(subjects[sub_idx]["bbox"], objects[obj_idx]["bbox"])
|
|
|
+ nearest_dis = float("inf")
|
|
|
for i in range(N):
|
|
|
# 取消原先算法中 1对1 匹配的偏置
|
|
|
# if i in seen_idx or i == sub_idx:continue
|
|
|
- nearest_dis = min(nearest_dis, bbox_distance(extract_bbox_func(subjects[i]), extract_bbox_func(objects[obj_idx])))
|
|
|
+ nearest_dis = min(nearest_dis, bbox_distance(subjects[i]["bbox"], objects[obj_idx]["bbox"]))
|
|
|
|
|
|
if pair_dis >= 3 * nearest_dis:
|
|
|
seen_idx.add(sub_idx)
|
|
|
@@ -169,21 +115,22 @@ def tie_up_category_by_distance_v3(
|
|
|
seen_idx.add(obj_idx + OBJ_IDX_OFFSET)
|
|
|
seen_sub_idx.add(sub_idx)
|
|
|
|
|
|
- ret.append({
|
|
|
- 'sub_bbox': subjects[sub_idx],
|
|
|
- 'obj_bboxes': [objects[obj_idx]],
|
|
|
- 'sub_idx': sub_idx,
|
|
|
- })
|
|
|
+ ret.append(
|
|
|
+ {
|
|
|
+ "sub_bbox": extract_subject_func(subjects[sub_idx]),
|
|
|
+ "obj_bboxes": [extract_object_func(objects[obj_idx])],
|
|
|
+ "sub_idx": sub_idx,
|
|
|
+ }
|
|
|
+ )
|
|
|
|
|
|
- # 处理剩余的对象
|
|
|
for i in range(len(objects)):
|
|
|
j = i + OBJ_IDX_OFFSET
|
|
|
if j in seen_idx:
|
|
|
continue
|
|
|
seen_idx.add(j)
|
|
|
- nearest_dis, nearest_sub_idx = float('inf'), -1
|
|
|
+ nearest_dis, nearest_sub_idx = float("inf"), -1
|
|
|
for k in range(len(subjects)):
|
|
|
- dis = bbox_distance(extract_bbox_func(objects[i]), extract_bbox_func(subjects[k]))
|
|
|
+ dis = bbox_distance(objects[i]["bbox"], subjects[k]["bbox"])
|
|
|
if dis < nearest_dis:
|
|
|
nearest_dis = dis
|
|
|
nearest_sub_idx = k
|
|
|
@@ -193,70 +140,29 @@ def tie_up_category_by_distance_v3(
|
|
|
continue
|
|
|
if k in seen_sub_idx:
|
|
|
for kk in range(len(ret)):
|
|
|
- if ret[kk]['sub_idx'] == k:
|
|
|
- ret[kk]['obj_bboxes'].append(objects[i])
|
|
|
+ if ret[kk]["sub_idx"] == k:
|
|
|
+ ret[kk]["obj_bboxes"].append(extract_object_func(objects[i]))
|
|
|
break
|
|
|
else:
|
|
|
- ret.append({
|
|
|
- 'sub_bbox': subjects[k],
|
|
|
- 'obj_bboxes': [objects[i]],
|
|
|
- 'sub_idx': k,
|
|
|
- })
|
|
|
+ ret.append(
|
|
|
+ {
|
|
|
+ "sub_bbox": extract_subject_func(subjects[k]),
|
|
|
+ "obj_bboxes": [extract_object_func(objects[i])],
|
|
|
+ "sub_idx": k,
|
|
|
+ }
|
|
|
+ )
|
|
|
seen_sub_idx.add(k)
|
|
|
seen_idx.add(k)
|
|
|
|
|
|
- # 处理剩余的主体
|
|
|
for i in range(len(subjects)):
|
|
|
if i in seen_sub_idx:
|
|
|
continue
|
|
|
- ret.append({
|
|
|
- 'sub_bbox': subjects[i],
|
|
|
- 'obj_bboxes': [],
|
|
|
- 'sub_idx': i,
|
|
|
- })
|
|
|
-
|
|
|
- return ret
|
|
|
-
|
|
|
-
|
|
|
-def remove_high_iou_low_confidence(layout_dets: List[Dict], iou_threshold: float = 0.9):
|
|
|
- """
|
|
|
- 删除高IOU且置信度较低的检测结果
|
|
|
-
|
|
|
- Args:
|
|
|
- layout_dets: 布局检测结果列表
|
|
|
- iou_threshold: IOU阈值
|
|
|
- """
|
|
|
- need_remove_list = []
|
|
|
-
|
|
|
- for i in range(len(layout_dets)):
|
|
|
- for j in range(i + 1, len(layout_dets)):
|
|
|
- layout_det1 = layout_dets[i]
|
|
|
- layout_det2 = layout_dets[j]
|
|
|
-
|
|
|
- if calculate_iou(layout_det1['bbox'], layout_det2['bbox']) > iou_threshold:
|
|
|
- layout_det_need_remove = layout_det1 if layout_det1['score'] < layout_det2['score'] else layout_det2
|
|
|
- if layout_det_need_remove not in need_remove_list:
|
|
|
- need_remove_list.append(layout_det_need_remove)
|
|
|
-
|
|
|
- for need_remove in need_remove_list:
|
|
|
- if need_remove in layout_dets:
|
|
|
- layout_dets.remove(need_remove)
|
|
|
-
|
|
|
-
|
|
|
-def remove_low_confidence(layout_dets: List[Dict], confidence_threshold: float = 0.05):
|
|
|
- """
|
|
|
- 删除置信度特别低的检测结果
|
|
|
-
|
|
|
- Args:
|
|
|
- layout_dets: 布局检测结果列表
|
|
|
- confidence_threshold: 置信度阈值
|
|
|
- """
|
|
|
- need_remove_list = []
|
|
|
- for layout_det in layout_dets:
|
|
|
- if layout_det['score'] <= confidence_threshold:
|
|
|
- need_remove_list.append(layout_det)
|
|
|
-
|
|
|
- for need_remove in need_remove_list:
|
|
|
- if need_remove in layout_dets:
|
|
|
- layout_dets.remove(need_remove)
|
|
|
-
|
|
|
+ ret.append(
|
|
|
+ {
|
|
|
+ "sub_bbox": extract_subject_func(subjects[i]),
|
|
|
+ "obj_bboxes": [],
|
|
|
+ "sub_idx": i,
|
|
|
+ }
|
|
|
+ )
|
|
|
+
|
|
|
+ return ret
|