|
|
@@ -0,0 +1,644 @@
|
|
|
+import copy
|
|
|
+import os
|
|
|
+import statistics
|
|
|
+import time
|
|
|
+from typing import List
|
|
|
+
|
|
|
+import torch
|
|
|
+from loguru import logger
|
|
|
+
|
|
|
+from magic_pdf.config.enums import SupportedPdfParseMethod
|
|
|
+from magic_pdf.data.dataset import Dataset, PageableData
|
|
|
+from magic_pdf.libs.boxbase import calculate_overlap_area_in_bbox1_area_ratio
|
|
|
+from magic_pdf.libs.clean_memory import clean_memory
|
|
|
+from magic_pdf.libs.commons import fitz, get_delta_time
|
|
|
+from magic_pdf.libs.config_reader import get_local_layoutreader_model_dir
|
|
|
+from magic_pdf.libs.convert_utils import dict_to_list
|
|
|
+from magic_pdf.libs.drop_reason import DropReason
|
|
|
+from magic_pdf.libs.hash_utils import compute_md5
|
|
|
+from magic_pdf.libs.local_math import float_equal
|
|
|
+from magic_pdf.libs.ocr_content_type import ContentType, BlockType
|
|
|
+from magic_pdf.model.magic_model import MagicModel
|
|
|
+from magic_pdf.para.para_split_v3 import para_split
|
|
|
+from magic_pdf.pre_proc.citationmarker_remove import remove_citation_marker
|
|
|
+from magic_pdf.pre_proc.construct_page_dict import \
|
|
|
+ ocr_construct_page_component_v2
|
|
|
+from magic_pdf.pre_proc.cut_image import ocr_cut_image_and_table
|
|
|
+from magic_pdf.pre_proc.equations_replace import (
|
|
|
+ combine_chars_to_pymudict, remove_chars_in_text_blocks,
|
|
|
+ replace_equations_in_textblock)
|
|
|
+from magic_pdf.pre_proc.ocr_detect_all_bboxes import \
|
|
|
+ ocr_prepare_bboxes_for_layout_split_v2
|
|
|
+from magic_pdf.pre_proc.ocr_dict_merge import (fill_spans_in_blocks,
|
|
|
+ fix_block_spans,
|
|
|
+ fix_discarded_block, fix_block_spans_v2)
|
|
|
+from magic_pdf.pre_proc.ocr_span_list_modify import (
|
|
|
+ get_qa_need_list_v2, remove_overlaps_low_confidence_spans,
|
|
|
+ remove_overlaps_min_spans)
|
|
|
+from magic_pdf.pre_proc.resolve_bbox_conflict import \
|
|
|
+ check_useful_block_horizontal_overlap
|
|
|
+
|
|
|
+
|
|
|
+def remove_horizontal_overlap_block_which_smaller(all_bboxes):
|
|
|
+ useful_blocks = []
|
|
|
+ for bbox in all_bboxes:
|
|
|
+ useful_blocks.append({'bbox': bbox[:4]})
|
|
|
+ is_useful_block_horz_overlap, smaller_bbox, bigger_bbox = (
|
|
|
+ check_useful_block_horizontal_overlap(useful_blocks)
|
|
|
+ )
|
|
|
+ if is_useful_block_horz_overlap:
|
|
|
+ logger.warning(
|
|
|
+ f'skip this page, reason: {DropReason.USEFUL_BLOCK_HOR_OVERLAP}, smaller bbox is {smaller_bbox}, bigger bbox is {bigger_bbox}'
|
|
|
+ ) # noqa: E501
|
|
|
+ for bbox in all_bboxes.copy():
|
|
|
+ if smaller_bbox == bbox[:4]:
|
|
|
+ all_bboxes.remove(bbox)
|
|
|
+
|
|
|
+ return is_useful_block_horz_overlap, all_bboxes
|
|
|
+
|
|
|
+
|
|
|
+def __replace_STX_ETX(text_str: str):
|
|
|
+ """Replace \u0002 and \u0003, as these characters become garbled when extracted using pymupdf. In fact, they were originally quotation marks.
|
|
|
+ Drawback: This issue is only observed in English text; it has not been found in Chinese text so far.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ text_str (str): raw text
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ _type_: replaced text
|
|
|
+ """ # noqa: E501
|
|
|
+ if text_str:
|
|
|
+ s = text_str.replace('\u0002', "'")
|
|
|
+ s = s.replace('\u0003', "'")
|
|
|
+ return s
|
|
|
+ return text_str
|
|
|
+
|
|
|
+
|
|
|
+def txt_spans_extract(pdf_page, inline_equations, interline_equations):
|
|
|
+ text_raw_blocks = pdf_page.get_text('dict', flags=fitz.TEXTFLAGS_TEXT)['blocks']
|
|
|
+ char_level_text_blocks = pdf_page.get_text('rawdict', flags=fitz.TEXTFLAGS_TEXT)[
|
|
|
+ 'blocks'
|
|
|
+ ]
|
|
|
+ text_blocks = combine_chars_to_pymudict(text_raw_blocks, char_level_text_blocks)
|
|
|
+ text_blocks = replace_equations_in_textblock(
|
|
|
+ text_blocks, inline_equations, interline_equations
|
|
|
+ )
|
|
|
+ text_blocks = remove_citation_marker(text_blocks)
|
|
|
+ text_blocks = remove_chars_in_text_blocks(text_blocks)
|
|
|
+ spans = []
|
|
|
+ for v in text_blocks:
|
|
|
+ for line in v['lines']:
|
|
|
+ for span in line['spans']:
|
|
|
+ bbox = span['bbox']
|
|
|
+ if float_equal(bbox[0], bbox[2]) or float_equal(bbox[1], bbox[3]):
|
|
|
+ continue
|
|
|
+ if span.get('type') not in (
|
|
|
+ ContentType.InlineEquation,
|
|
|
+ ContentType.InterlineEquation,
|
|
|
+ ):
|
|
|
+ spans.append(
|
|
|
+ {
|
|
|
+ 'bbox': list(span['bbox']),
|
|
|
+ 'content': __replace_STX_ETX(span['text']),
|
|
|
+ 'type': ContentType.Text,
|
|
|
+ 'score': 1.0,
|
|
|
+ }
|
|
|
+ )
|
|
|
+ return spans
|
|
|
+
|
|
|
+
|
|
|
+def replace_text_span(pymu_spans, ocr_spans):
|
|
|
+ return list(filter(lambda x: x['type'] != ContentType.Text, ocr_spans)) + pymu_spans
|
|
|
+
|
|
|
+
|
|
|
+def model_init(model_name: str):
|
|
|
+ from transformers import LayoutLMv3ForTokenClassification
|
|
|
+
|
|
|
+ if torch.cuda.is_available():
|
|
|
+ device = torch.device('cuda')
|
|
|
+ if torch.cuda.is_bf16_supported():
|
|
|
+ supports_bfloat16 = True
|
|
|
+ else:
|
|
|
+ supports_bfloat16 = False
|
|
|
+ else:
|
|
|
+ device = torch.device('cpu')
|
|
|
+ supports_bfloat16 = False
|
|
|
+
|
|
|
+ if model_name == 'layoutreader':
|
|
|
+ # 检测modelscope的缓存目录是否存在
|
|
|
+ layoutreader_model_dir = get_local_layoutreader_model_dir()
|
|
|
+ if os.path.exists(layoutreader_model_dir):
|
|
|
+ model = LayoutLMv3ForTokenClassification.from_pretrained(
|
|
|
+ layoutreader_model_dir
|
|
|
+ )
|
|
|
+ else:
|
|
|
+ logger.warning(
|
|
|
+ 'local layoutreader model not exists, use online model from huggingface'
|
|
|
+ )
|
|
|
+ model = LayoutLMv3ForTokenClassification.from_pretrained(
|
|
|
+ 'hantian/layoutreader'
|
|
|
+ )
|
|
|
+ # 检查设备是否支持 bfloat16
|
|
|
+ if supports_bfloat16:
|
|
|
+ model.bfloat16()
|
|
|
+ model.to(device).eval()
|
|
|
+ else:
|
|
|
+ logger.error('model name not allow')
|
|
|
+ exit(1)
|
|
|
+ return model
|
|
|
+
|
|
|
+
|
|
|
+class ModelSingleton:
|
|
|
+ _instance = None
|
|
|
+ _models = {}
|
|
|
+
|
|
|
+ def __new__(cls, *args, **kwargs):
|
|
|
+ if cls._instance is None:
|
|
|
+ cls._instance = super().__new__(cls)
|
|
|
+ return cls._instance
|
|
|
+
|
|
|
+ def get_model(self, model_name: str):
|
|
|
+ if model_name not in self._models:
|
|
|
+ self._models[model_name] = model_init(model_name=model_name)
|
|
|
+ return self._models[model_name]
|
|
|
+
|
|
|
+
|
|
|
+def do_predict(boxes: List[List[int]], model) -> List[int]:
|
|
|
+ from magic_pdf.model.v3.helpers import (boxes2inputs, parse_logits,
|
|
|
+ prepare_inputs)
|
|
|
+
|
|
|
+ inputs = boxes2inputs(boxes)
|
|
|
+ inputs = prepare_inputs(inputs, model)
|
|
|
+ logits = model(**inputs).logits.cpu().squeeze(0)
|
|
|
+ return parse_logits(logits, len(boxes))
|
|
|
+
|
|
|
+
|
|
|
+def cal_block_index(fix_blocks, sorted_bboxes):
|
|
|
+ for block in fix_blocks:
|
|
|
+
|
|
|
+ line_index_list = []
|
|
|
+ if len(block['lines']) == 0:
|
|
|
+ block['index'] = sorted_bboxes.index(block['bbox'])
|
|
|
+ else:
|
|
|
+ for line in block['lines']:
|
|
|
+ line['index'] = sorted_bboxes.index(line['bbox'])
|
|
|
+ line_index_list.append(line['index'])
|
|
|
+ median_value = statistics.median(line_index_list)
|
|
|
+ block['index'] = median_value
|
|
|
+
|
|
|
+ # 删除图表body block中的虚拟line信息, 并用real_lines信息回填
|
|
|
+ if block['type'] in [BlockType.ImageBody, BlockType.TableBody]:
|
|
|
+ block['virtual_lines'] = copy.deepcopy(block['lines'])
|
|
|
+ block['lines'] = copy.deepcopy(block['real_lines'])
|
|
|
+ del block['real_lines']
|
|
|
+
|
|
|
+ return fix_blocks
|
|
|
+
|
|
|
+
|
|
|
+def insert_lines_into_block(block_bbox, line_height, page_w, page_h):
|
|
|
+ # block_bbox是一个元组(x0, y0, x1, y1),其中(x0, y0)是左下角坐标,(x1, y1)是右上角坐标
|
|
|
+ x0, y0, x1, y1 = block_bbox
|
|
|
+
|
|
|
+ block_height = y1 - y0
|
|
|
+ block_weight = x1 - x0
|
|
|
+
|
|
|
+ # 如果block高度小于n行正文,则直接返回block的bbox
|
|
|
+ if line_height * 3 < block_height:
|
|
|
+ if (
|
|
|
+ block_height > page_h * 0.25 and page_w * 0.5 > block_weight > page_w * 0.25
|
|
|
+ ): # 可能是双列结构,可以切细点
|
|
|
+ lines = int(block_height / line_height) + 1
|
|
|
+ else:
|
|
|
+ # 如果block的宽度超过0.4页面宽度,则将block分成3行(是一种复杂布局,图不能切的太细)
|
|
|
+ if block_weight > page_w * 0.4:
|
|
|
+ line_height = (y1 - y0) / 3
|
|
|
+ lines = 3
|
|
|
+ elif block_weight > page_w * 0.25: # (可能是三列结构,也切细点)
|
|
|
+ lines = int(block_height / line_height) + 1
|
|
|
+ else: # 判断长宽比
|
|
|
+ if block_height / block_weight > 1.2: # 细长的不分
|
|
|
+ return [[x0, y0, x1, y1]]
|
|
|
+ else: # 不细长的还是分成两行
|
|
|
+ line_height = (y1 - y0) / 2
|
|
|
+ lines = 2
|
|
|
+
|
|
|
+ # 确定从哪个y位置开始绘制线条
|
|
|
+ current_y = y0
|
|
|
+
|
|
|
+ # 用于存储线条的位置信息[(x0, y), ...]
|
|
|
+ lines_positions = []
|
|
|
+
|
|
|
+ for i in range(lines):
|
|
|
+ lines_positions.append([x0, current_y, x1, current_y + line_height])
|
|
|
+ current_y += line_height
|
|
|
+ return lines_positions
|
|
|
+
|
|
|
+ else:
|
|
|
+ return [[x0, y0, x1, y1]]
|
|
|
+
|
|
|
+
|
|
|
+def sort_lines_by_model(fix_blocks, page_w, page_h, line_height):
|
|
|
+ page_line_list = []
|
|
|
+ for block in fix_blocks:
|
|
|
+ if block['type'] in [
|
|
|
+ BlockType.Text, BlockType.Title, BlockType.InterlineEquation,
|
|
|
+ BlockType.ImageCaption, BlockType.ImageFootnote,
|
|
|
+ BlockType.TableCaption, BlockType.TableFootnote
|
|
|
+ ]:
|
|
|
+ if len(block['lines']) == 0:
|
|
|
+ bbox = block['bbox']
|
|
|
+ lines = insert_lines_into_block(bbox, line_height, page_w, page_h)
|
|
|
+ for line in lines:
|
|
|
+ block['lines'].append({'bbox': line, 'spans': []})
|
|
|
+ page_line_list.extend(lines)
|
|
|
+ else:
|
|
|
+ for line in block['lines']:
|
|
|
+ bbox = line['bbox']
|
|
|
+ page_line_list.append(bbox)
|
|
|
+ elif block['type'] in [BlockType.ImageBody, BlockType.TableBody]:
|
|
|
+ bbox = block['bbox']
|
|
|
+ block["real_lines"] = copy.deepcopy(block['lines'])
|
|
|
+ lines = insert_lines_into_block(bbox, line_height, page_w, page_h)
|
|
|
+ block['lines'] = []
|
|
|
+ for line in lines:
|
|
|
+ block['lines'].append({'bbox': line, 'spans': []})
|
|
|
+ page_line_list.extend(lines)
|
|
|
+
|
|
|
+ # 使用layoutreader排序
|
|
|
+ x_scale = 1000.0 / page_w
|
|
|
+ y_scale = 1000.0 / page_h
|
|
|
+ boxes = []
|
|
|
+ # logger.info(f"Scale: {x_scale}, {y_scale}, Boxes len: {len(page_line_list)}")
|
|
|
+ for left, top, right, bottom in page_line_list:
|
|
|
+ if left < 0:
|
|
|
+ logger.warning(
|
|
|
+ f'left < 0, left: {left}, right: {right}, top: {top}, bottom: {bottom}, page_w: {page_w}, page_h: {page_h}'
|
|
|
+ ) # noqa: E501
|
|
|
+ left = 0
|
|
|
+ if right > page_w:
|
|
|
+ logger.warning(
|
|
|
+ f'right > page_w, left: {left}, right: {right}, top: {top}, bottom: {bottom}, page_w: {page_w}, page_h: {page_h}'
|
|
|
+ ) # noqa: E501
|
|
|
+ right = page_w
|
|
|
+ if top < 0:
|
|
|
+ logger.warning(
|
|
|
+ f'top < 0, left: {left}, right: {right}, top: {top}, bottom: {bottom}, page_w: {page_w}, page_h: {page_h}'
|
|
|
+ ) # noqa: E501
|
|
|
+ top = 0
|
|
|
+ if bottom > page_h:
|
|
|
+ logger.warning(
|
|
|
+ f'bottom > page_h, left: {left}, right: {right}, top: {top}, bottom: {bottom}, page_w: {page_w}, page_h: {page_h}'
|
|
|
+ ) # noqa: E501
|
|
|
+ bottom = page_h
|
|
|
+
|
|
|
+ left = round(left * x_scale)
|
|
|
+ top = round(top * y_scale)
|
|
|
+ right = round(right * x_scale)
|
|
|
+ bottom = round(bottom * y_scale)
|
|
|
+ assert (
|
|
|
+ 1000 >= right >= left >= 0 and 1000 >= bottom >= top >= 0
|
|
|
+ ), f'Invalid box. right: {right}, left: {left}, bottom: {bottom}, top: {top}' # noqa: E126, E121
|
|
|
+ boxes.append([left, top, right, bottom])
|
|
|
+ model_manager = ModelSingleton()
|
|
|
+ model = model_manager.get_model('layoutreader')
|
|
|
+ with torch.no_grad():
|
|
|
+ orders = do_predict(boxes, model)
|
|
|
+ sorted_bboxes = [page_line_list[i] for i in orders]
|
|
|
+
|
|
|
+ return sorted_bboxes
|
|
|
+
|
|
|
+
|
|
|
+def get_line_height(blocks):
|
|
|
+ page_line_height_list = []
|
|
|
+ for block in blocks:
|
|
|
+ if block['type'] in [
|
|
|
+ BlockType.Text, BlockType.Title,
|
|
|
+ BlockType.ImageCaption, BlockType.ImageFootnote,
|
|
|
+ BlockType.TableCaption, BlockType.TableFootnote
|
|
|
+ ]:
|
|
|
+ for line in block['lines']:
|
|
|
+ bbox = line['bbox']
|
|
|
+ page_line_height_list.append(int(bbox[3] - bbox[1]))
|
|
|
+ if len(page_line_height_list) > 0:
|
|
|
+ return statistics.median(page_line_height_list)
|
|
|
+ else:
|
|
|
+ return 10
|
|
|
+
|
|
|
+
|
|
|
+def process_groups(groups, body_key, caption_key, footnote_key):
|
|
|
+ body_blocks = []
|
|
|
+ caption_blocks = []
|
|
|
+ footnote_blocks = []
|
|
|
+ for i, group in enumerate(groups):
|
|
|
+ group[body_key]['group_id'] = i
|
|
|
+ body_blocks.append(group[body_key])
|
|
|
+ for caption_block in group[caption_key]:
|
|
|
+ caption_block['group_id'] = i
|
|
|
+ caption_blocks.append(caption_block)
|
|
|
+ for footnote_block in group[footnote_key]:
|
|
|
+ footnote_block['group_id'] = i
|
|
|
+ footnote_blocks.append(footnote_block)
|
|
|
+ return body_blocks, caption_blocks, footnote_blocks
|
|
|
+
|
|
|
+
|
|
|
+def process_block_list(blocks, body_type, block_type):
|
|
|
+ indices = [block['index'] for block in blocks]
|
|
|
+ median_index = statistics.median(indices)
|
|
|
+
|
|
|
+ body_bbox = next((block['bbox'] for block in blocks if block.get('type') == body_type), [])
|
|
|
+
|
|
|
+ return {
|
|
|
+ 'type': block_type,
|
|
|
+ 'bbox': body_bbox,
|
|
|
+ 'blocks': blocks,
|
|
|
+ 'index': median_index,
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+def revert_group_blocks(blocks):
|
|
|
+ image_groups = {}
|
|
|
+ table_groups = {}
|
|
|
+ new_blocks = []
|
|
|
+ for block in blocks:
|
|
|
+ if block['type'] in [BlockType.ImageBody, BlockType.ImageCaption, BlockType.ImageFootnote]:
|
|
|
+ group_id = block['group_id']
|
|
|
+ if group_id not in image_groups:
|
|
|
+ image_groups[group_id] = []
|
|
|
+ image_groups[group_id].append(block)
|
|
|
+ elif block['type'] in [BlockType.TableBody, BlockType.TableCaption, BlockType.TableFootnote]:
|
|
|
+ group_id = block['group_id']
|
|
|
+ if group_id not in table_groups:
|
|
|
+ table_groups[group_id] = []
|
|
|
+ table_groups[group_id].append(block)
|
|
|
+ else:
|
|
|
+ new_blocks.append(block)
|
|
|
+
|
|
|
+ for group_id, blocks in image_groups.items():
|
|
|
+ new_blocks.append(process_block_list(blocks, BlockType.ImageBody, BlockType.Image))
|
|
|
+
|
|
|
+ for group_id, blocks in table_groups.items():
|
|
|
+ new_blocks.append(process_block_list(blocks, BlockType.TableBody, BlockType.Table))
|
|
|
+
|
|
|
+ return new_blocks
|
|
|
+
|
|
|
+
|
|
|
+def remove_outside_spans(spans, all_bboxes, all_discarded_blocks):
|
|
|
+ def get_block_bboxes(blocks, block_type_list):
|
|
|
+ return [block[0:4] for block in blocks if block[7] in block_type_list]
|
|
|
+
|
|
|
+ image_bboxes = get_block_bboxes(all_bboxes, [BlockType.ImageBody])
|
|
|
+ table_bboxes = get_block_bboxes(all_bboxes, [BlockType.TableBody])
|
|
|
+ other_block_type = []
|
|
|
+ for block_type in BlockType.__dict__.values():
|
|
|
+ if not isinstance(block_type, str):
|
|
|
+ continue
|
|
|
+ if block_type not in [BlockType.ImageBody, BlockType.TableBody]:
|
|
|
+ other_block_type.append(block_type)
|
|
|
+ other_block_bboxes = get_block_bboxes(all_bboxes, other_block_type)
|
|
|
+ discarded_block_bboxes = get_block_bboxes(all_discarded_blocks, [BlockType.Discarded])
|
|
|
+
|
|
|
+ new_spans = []
|
|
|
+
|
|
|
+ for span in spans:
|
|
|
+ span_bbox = span['bbox']
|
|
|
+ span_type = span['type']
|
|
|
+
|
|
|
+ if any(calculate_overlap_area_in_bbox1_area_ratio(span_bbox, block_bbox) > 0.4 for block_bbox in
|
|
|
+ discarded_block_bboxes):
|
|
|
+ new_spans.append(span)
|
|
|
+ continue
|
|
|
+
|
|
|
+ if span_type == ContentType.Image:
|
|
|
+ if any(calculate_overlap_area_in_bbox1_area_ratio(span_bbox, block_bbox) > 0.5 for block_bbox in
|
|
|
+ image_bboxes):
|
|
|
+ new_spans.append(span)
|
|
|
+ elif span_type == ContentType.Table:
|
|
|
+ if any(calculate_overlap_area_in_bbox1_area_ratio(span_bbox, block_bbox) > 0.5 for block_bbox in
|
|
|
+ table_bboxes):
|
|
|
+ new_spans.append(span)
|
|
|
+ else:
|
|
|
+ if any(calculate_overlap_area_in_bbox1_area_ratio(span_bbox, block_bbox) > 0.5 for block_bbox in
|
|
|
+ other_block_bboxes):
|
|
|
+ new_spans.append(span)
|
|
|
+
|
|
|
+ return new_spans
|
|
|
+
|
|
|
+
|
|
|
+def parse_page_core(
|
|
|
+ page_doc: PageableData, magic_model, page_id, pdf_bytes_md5, imageWriter, parse_mode
|
|
|
+):
|
|
|
+ need_drop = False
|
|
|
+ drop_reason = []
|
|
|
+
|
|
|
+ """从magic_model对象中获取后面会用到的区块信息"""
|
|
|
+ # img_blocks = magic_model.get_imgs(page_id)
|
|
|
+ # table_blocks = magic_model.get_tables(page_id)
|
|
|
+
|
|
|
+ img_groups = magic_model.get_imgs_v2(page_id)
|
|
|
+ table_groups = magic_model.get_tables_v2(page_id)
|
|
|
+
|
|
|
+ img_body_blocks, img_caption_blocks, img_footnote_blocks = process_groups(
|
|
|
+ img_groups, 'image_body', 'image_caption_list', 'image_footnote_list'
|
|
|
+ )
|
|
|
+
|
|
|
+ table_body_blocks, table_caption_blocks, table_footnote_blocks = process_groups(
|
|
|
+ table_groups, 'table_body', 'table_caption_list', 'table_footnote_list'
|
|
|
+ )
|
|
|
+
|
|
|
+ discarded_blocks = magic_model.get_discarded(page_id)
|
|
|
+ text_blocks = magic_model.get_text_blocks(page_id)
|
|
|
+ title_blocks = magic_model.get_title_blocks(page_id)
|
|
|
+ inline_equations, interline_equations, interline_equation_blocks = (
|
|
|
+ magic_model.get_equations(page_id)
|
|
|
+ )
|
|
|
+
|
|
|
+ page_w, page_h = magic_model.get_page_size(page_id)
|
|
|
+
|
|
|
+ """将所有区块的bbox整理到一起"""
|
|
|
+ # interline_equation_blocks参数不够准,后面切换到interline_equations上
|
|
|
+ interline_equation_blocks = []
|
|
|
+ if len(interline_equation_blocks) > 0:
|
|
|
+ all_bboxes, all_discarded_blocks = ocr_prepare_bboxes_for_layout_split_v2(
|
|
|
+ img_body_blocks, img_caption_blocks, img_footnote_blocks,
|
|
|
+ table_body_blocks, table_caption_blocks, table_footnote_blocks,
|
|
|
+ discarded_blocks,
|
|
|
+ text_blocks,
|
|
|
+ title_blocks,
|
|
|
+ interline_equation_blocks,
|
|
|
+ page_w,
|
|
|
+ page_h,
|
|
|
+ )
|
|
|
+ else:
|
|
|
+ all_bboxes, all_discarded_blocks = ocr_prepare_bboxes_for_layout_split_v2(
|
|
|
+ img_body_blocks, img_caption_blocks, img_footnote_blocks,
|
|
|
+ table_body_blocks, table_caption_blocks, table_footnote_blocks,
|
|
|
+ discarded_blocks,
|
|
|
+ text_blocks,
|
|
|
+ title_blocks,
|
|
|
+ interline_equations,
|
|
|
+ page_w,
|
|
|
+ page_h,
|
|
|
+ )
|
|
|
+
|
|
|
+ spans = magic_model.get_all_spans(page_id)
|
|
|
+
|
|
|
+ """根据parse_mode,构造spans"""
|
|
|
+ if parse_mode == SupportedPdfParseMethod.TXT:
|
|
|
+ """ocr 中文本类的 span 用 pymu spans 替换!"""
|
|
|
+ pymu_spans = txt_spans_extract(page_doc, inline_equations, interline_equations)
|
|
|
+ spans = replace_text_span(pymu_spans, spans)
|
|
|
+ elif parse_mode == SupportedPdfParseMethod.OCR:
|
|
|
+ pass
|
|
|
+ else:
|
|
|
+ raise Exception('parse_mode must be txt or ocr')
|
|
|
+
|
|
|
+ """在删除重复span之前,应该通过image_body和table_body的block过滤一下image和table的span"""
|
|
|
+ """顺便删除大水印并保留abandon的span"""
|
|
|
+ spans = remove_outside_spans(spans, all_bboxes, all_discarded_blocks)
|
|
|
+
|
|
|
+ """删除重叠spans中置信度较低的那些"""
|
|
|
+ spans, dropped_spans_by_confidence = remove_overlaps_low_confidence_spans(spans)
|
|
|
+ """删除重叠spans中较小的那些"""
|
|
|
+ spans, dropped_spans_by_span_overlap = remove_overlaps_min_spans(spans)
|
|
|
+ """对image和table截图"""
|
|
|
+ spans = ocr_cut_image_and_table(
|
|
|
+ spans, page_doc, page_id, pdf_bytes_md5, imageWriter
|
|
|
+ )
|
|
|
+
|
|
|
+ """先处理不需要排版的discarded_blocks"""
|
|
|
+ discarded_block_with_spans, spans = fill_spans_in_blocks(
|
|
|
+ all_discarded_blocks, spans, 0.4
|
|
|
+ )
|
|
|
+ fix_discarded_blocks = fix_discarded_block(discarded_block_with_spans)
|
|
|
+
|
|
|
+ """如果当前页面没有bbox则跳过"""
|
|
|
+ if len(all_bboxes) == 0:
|
|
|
+ logger.warning(f'skip this page, not found useful bbox, page_id: {page_id}')
|
|
|
+ return ocr_construct_page_component_v2(
|
|
|
+ [],
|
|
|
+ [],
|
|
|
+ page_id,
|
|
|
+ page_w,
|
|
|
+ page_h,
|
|
|
+ [],
|
|
|
+ [],
|
|
|
+ [],
|
|
|
+ interline_equations,
|
|
|
+ fix_discarded_blocks,
|
|
|
+ need_drop,
|
|
|
+ drop_reason,
|
|
|
+ )
|
|
|
+
|
|
|
+ """将span填入blocks中"""
|
|
|
+ block_with_spans, spans = fill_spans_in_blocks(all_bboxes, spans, 0.5)
|
|
|
+
|
|
|
+ """对block进行fix操作"""
|
|
|
+ fix_blocks = fix_block_spans_v2(block_with_spans)
|
|
|
+
|
|
|
+ """获取所有line并计算正文line的高度"""
|
|
|
+ line_height = get_line_height(fix_blocks)
|
|
|
+
|
|
|
+ """获取所有line并对line排序"""
|
|
|
+ sorted_bboxes = sort_lines_by_model(fix_blocks, page_w, page_h, line_height)
|
|
|
+
|
|
|
+ """根据line的中位数算block的序列关系"""
|
|
|
+ fix_blocks = cal_block_index(fix_blocks, sorted_bboxes)
|
|
|
+
|
|
|
+ """将image和table的block还原回group形式参与后续流程"""
|
|
|
+ fix_blocks = revert_group_blocks(fix_blocks)
|
|
|
+
|
|
|
+ """重排block"""
|
|
|
+ sorted_blocks = sorted(fix_blocks, key=lambda b: b['index'])
|
|
|
+
|
|
|
+ """获取QA需要外置的list"""
|
|
|
+ images, tables, interline_equations = get_qa_need_list_v2(sorted_blocks)
|
|
|
+
|
|
|
+ """构造pdf_info_dict"""
|
|
|
+ page_info = ocr_construct_page_component_v2(
|
|
|
+ sorted_blocks,
|
|
|
+ [],
|
|
|
+ page_id,
|
|
|
+ page_w,
|
|
|
+ page_h,
|
|
|
+ [],
|
|
|
+ images,
|
|
|
+ tables,
|
|
|
+ interline_equations,
|
|
|
+ fix_discarded_blocks,
|
|
|
+ need_drop,
|
|
|
+ drop_reason,
|
|
|
+ )
|
|
|
+ return page_info
|
|
|
+
|
|
|
+
|
|
|
+def pdf_parse_union(
|
|
|
+ dataset: Dataset,
|
|
|
+ model_list,
|
|
|
+ imageWriter,
|
|
|
+ parse_mode,
|
|
|
+ start_page_id=0,
|
|
|
+ end_page_id=None,
|
|
|
+ debug_mode=False,
|
|
|
+):
|
|
|
+ pdf_bytes_md5 = compute_md5(dataset.data_bits())
|
|
|
+
|
|
|
+ """初始化空的pdf_info_dict"""
|
|
|
+ pdf_info_dict = {}
|
|
|
+
|
|
|
+ """用model_list和docs对象初始化magic_model"""
|
|
|
+ magic_model = MagicModel(model_list, dataset)
|
|
|
+
|
|
|
+ """根据输入的起始范围解析pdf"""
|
|
|
+ # end_page_id = end_page_id if end_page_id else len(pdf_docs) - 1
|
|
|
+ end_page_id = (
|
|
|
+ end_page_id
|
|
|
+ if end_page_id is not None and end_page_id >= 0
|
|
|
+ else len(dataset) - 1
|
|
|
+ )
|
|
|
+
|
|
|
+ if end_page_id > len(dataset) - 1:
|
|
|
+ logger.warning('end_page_id is out of range, use pdf_docs length')
|
|
|
+ end_page_id = len(dataset) - 1
|
|
|
+
|
|
|
+ """初始化启动时间"""
|
|
|
+ start_time = time.time()
|
|
|
+
|
|
|
+ for page_id, page in enumerate(dataset):
|
|
|
+ """debug时输出每页解析的耗时."""
|
|
|
+ if debug_mode:
|
|
|
+ time_now = time.time()
|
|
|
+ logger.info(
|
|
|
+ f'page_id: {page_id}, last_page_cost_time: {get_delta_time(start_time)}'
|
|
|
+ )
|
|
|
+ start_time = time_now
|
|
|
+
|
|
|
+ """解析pdf中的每一页"""
|
|
|
+ if start_page_id <= page_id <= end_page_id:
|
|
|
+ page_info = parse_page_core(
|
|
|
+ page, magic_model, page_id, pdf_bytes_md5, imageWriter, parse_mode
|
|
|
+ )
|
|
|
+ else:
|
|
|
+ page_info = page.get_page_info()
|
|
|
+ page_w = page_info.w
|
|
|
+ page_h = page_info.h
|
|
|
+ page_info = ocr_construct_page_component_v2(
|
|
|
+ [], [], page_id, page_w, page_h, [], [], [], [], [], True, 'skip page'
|
|
|
+ )
|
|
|
+ pdf_info_dict[f'page_{page_id}'] = page_info
|
|
|
+
|
|
|
+ """分段"""
|
|
|
+ para_split(pdf_info_dict, debug_mode=debug_mode)
|
|
|
+
|
|
|
+ """dict转list"""
|
|
|
+ pdf_info_list = dict_to_list(pdf_info_dict)
|
|
|
+ new_pdf_info_dict = {
|
|
|
+ 'pdf_info': pdf_info_list,
|
|
|
+ }
|
|
|
+
|
|
|
+ clean_memory()
|
|
|
+
|
|
|
+ return new_pdf_info_dict
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == '__main__':
|
|
|
+ pass
|