瀏覽代碼

docs(README): add Ascend NPU acceleration guide

- Add new file README_Ascend_NPU_Acceleration_zh_CN.md in docs folder
- Update README.md and README_zh-CN.md to include link to new NPU acceleration guide
- Provide instructions for building and running Docker image for Ascend NPU
- List known issues and limitations when using Ascend NPU
myhloli 10 月之前
父節點
當前提交
4d110d318d
共有 5 個文件被更改,包括 58 次插入3 次删除
  1. 1 1
      README.md
  2. 2 1
      README_zh-CN.md
  3. 1 1
      docker/ascend_npu/Dockerfile
  4. 0 0
      docker/ascend_npu/requirements.txt
  5. 54 0
      docs/README_Ascend_NPU_Acceleration_zh_CN.md

+ 1 - 1
README.md

@@ -288,7 +288,7 @@ If your device supports CUDA and meets the GPU requirements of the mainline envi
 ### Using NPU
 
 If your device has NPU acceleration hardware, you can follow the tutorial below to use NPU acceleration:
-
+[Ascend NPU Acceleration](docs/README_Ascend_NPU_Acceleration_zh_CN.md)
 
 ## Usage
 

+ 2 - 1
README_zh-CN.md

@@ -284,7 +284,7 @@ pip install -U magic-pdf[full] --extra-index-url https://wheels.myhloli.com -i h
 > docker run --rm --gpus=all nvidia/cuda:12.1.0-base-ubuntu22.04 nvidia-smi
 > ```
   ```bash
-  wget https://github.com/opendatalab/MinerU/raw/master/docker/china/Dockerfile -O Dockerfile
+  wget https://gitee.com/myhloli/MinerU/raw/master/docker/china/Dockerfile -O Dockerfile
   docker build -t mineru:latest .
   docker run --rm -it --gpus=all mineru:latest /bin/bash
   magic-pdf --help
@@ -292,6 +292,7 @@ pip install -U magic-pdf[full] --extra-index-url https://wheels.myhloli.com -i h
 ### 使用NPU
 
 如果您的设备存在NPU加速硬件,则可以通过以下教程使用NPU加速:
+[NPU加速教程](docs/README_Ascend_NPU_Acceleration_zh_CN.md)
 
 ## 使用
 

+ 1 - 1
docker/huawei_npu/Dockerfile → docker/ascend_npu/Dockerfile

@@ -33,7 +33,7 @@ RUN python3 -m venv /opt/mineru_venv
 # Activate the virtual environment and install necessary Python packages
 RUN /bin/bash -c "source /opt/mineru_venv/bin/activate && \
     pip3 install --upgrade pip -i https://mirrors.aliyun.com/pypi/simple && \
-    wget https://gitee.com/myhloli/MinerU/raw/master/docker/huawei_npu/requirements.txt -O requirements.txt && \
+    wget https://gitee.com/myhloli/MinerU/raw/master/docker/ascend_npu/requirements.txt -O requirements.txt && \
     pip3 install -r requirements.txt --extra-index-url https://wheels.myhloli.com -i https://mirrors.aliyun.com/pypi/simple && \
     wget https://gitee.com/ascend/pytorch/releases/download/v6.0.rc2-pytorch2.3.1/torch_npu-2.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl && \
     pip install torch_npu-2.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl"

+ 0 - 0
docker/huawei_npu/requirements.txt → docker/ascend_npu/requirements.txt


+ 54 - 0
docs/README_Ascend_NPU_Acceleration_zh_CN.md

@@ -0,0 +1,54 @@
+# Ascend NPU 加速
+
+## 简介
+
+本文档介绍如何在 Ascend NPU 上使用 MinerU。本文档内容已在`华为Atlas 800T A2`服务器上测试通过。
+```
+CPU:鲲鹏 920 aarch64 2.6GHz
+NPU:Ascend 910B 64GB
+OS:openEuler 22.03 (LTS-SP3)
+```
+由于适配 Ascend NPU 的环境较为复杂,建议使用 Docker 容器运行 MinerU。
+
+
+## 构建镜像
+请保持网络状况良好,并执行以下代码构建镜像。    
+```bash
+wget https://gitee.com/myhloli/MinerU/raw/master/docker/ascend_npu/Dockerfile -O Dockerfile
+docker build -t mineru_npu:latest .
+```
+如果构建过程中未发生报错则说明镜像构建成功。
+
+
+## 运行容器
+
+```bash
+docker run --rm -it -u root --privileged=true \
+    --ipc=host \
+    --network=host \
+    --device=/dev/davinci0 \
+    --device=/dev/davinci1 \
+    --device=/dev/davinci2 \
+    --device=/dev/davinci3 \
+    --device=/dev/davinci4 \
+    --device=/dev/davinci5 \
+    --device=/dev/davinci6 \
+    --device=/dev/davinci7 \
+    --device=/dev/davinci_manager \
+    --device=/dev/devmm_svm \
+    --device=/dev/hisi_hdc \
+    -v /var/log/npu/:/usr/slog \
+    -v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
+    -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \
+    mineru_npu:latest \
+    /bin/bash -c "echo 'source /opt/mineru_venv/bin/activate' >> ~/.bashrc && exec bash"
+
+magic-pdf --help
+```
+
+
+## 已知问题
+
+- paddlepaddle使用内嵌onnx模型,仅支持中英文ocr,不支持其他语言
+- layout模型使用layoutlmv3时会发生间歇性崩溃,建议使用默认配置的doclayout_yolo模型
+- 表格解析仅适配了rapid_table模型,其他模型可能会无法使用