|
|
@@ -127,7 +127,7 @@ class BatchAnalyze:
|
|
|
# 收集所有需要OCR检测的裁剪图像
|
|
|
all_cropped_images_info = []
|
|
|
|
|
|
- for ocr_res_list_dict in tqdm(ocr_res_list_all_page, desc="Preparing OCR-det batches"):
|
|
|
+ for ocr_res_list_dict in ocr_res_list_all_page:
|
|
|
_lang = ocr_res_list_dict['lang']
|
|
|
|
|
|
for res in ocr_res_list_dict['ocr_res_list']:
|
|
|
@@ -156,7 +156,7 @@ class BatchAnalyze:
|
|
|
if not lang_crop_list:
|
|
|
continue
|
|
|
|
|
|
- logger.info(f"Processing OCR detection for language {lang} with {len(lang_crop_list)} images")
|
|
|
+ # logger.info(f"Processing OCR detection for language {lang} with {len(lang_crop_list)} images")
|
|
|
|
|
|
# 获取OCR模型
|
|
|
atom_model_manager = AtomModelSingleton()
|
|
|
@@ -201,7 +201,7 @@ class BatchAnalyze:
|
|
|
|
|
|
# 批处理检测
|
|
|
batch_size = min(len(batch_images), self.batch_ratio * 16) # 增加批处理大小
|
|
|
- logger.debug(f"OCR-det batch: {batch_size} images, target size: {target_h}x{target_w}")
|
|
|
+ # logger.debug(f"OCR-det batch: {batch_size} images, target size: {target_h}x{target_w}")
|
|
|
batch_results = ocr_model.text_detector.batch_predict(batch_images, batch_size)
|
|
|
|
|
|
# 处理批处理结果
|