|
|
@@ -180,7 +180,7 @@ def to_pdf(file_path):
|
|
|
def update_interface(backend_choice):
|
|
|
if backend_choice in ["vlm-transformers", "vlm-sglang-engine"]:
|
|
|
return gr.update(visible=False), gr.update(visible=False)
|
|
|
- elif backend_choice in ["vlm-sglang-client"]: # pipeline
|
|
|
+ elif backend_choice in ["vlm-sglang-client"]:
|
|
|
return gr.update(visible=True), gr.update(visible=False)
|
|
|
elif backend_choice in ["pipeline"]:
|
|
|
return gr.update(visible=False), gr.update(visible=True)
|
|
|
@@ -230,7 +230,7 @@ def main(example_enable, sglang_engine_enable, mem_fraction_static, torch_compil
|
|
|
try:
|
|
|
print("Start init SgLang engine...")
|
|
|
from mineru.backend.vlm.vlm_analyze import ModelSingleton
|
|
|
- modelsingleton = ModelSingleton()
|
|
|
+ model_singleton = ModelSingleton()
|
|
|
|
|
|
model_params = {
|
|
|
"enable_torch_compile": torch_compile_enable
|
|
|
@@ -239,7 +239,7 @@ def main(example_enable, sglang_engine_enable, mem_fraction_static, torch_compil
|
|
|
if mem_fraction_static is not None:
|
|
|
model_params["mem_fraction_static"] = mem_fraction_static
|
|
|
|
|
|
- predictor = modelsingleton.get_model(
|
|
|
+ predictor = model_singleton.get_model(
|
|
|
"sglang-engine",
|
|
|
None,
|
|
|
None,
|
|
|
@@ -266,8 +266,6 @@ def main(example_enable, sglang_engine_enable, mem_fraction_static, torch_compil
|
|
|
drop_list = ["pipeline", "vlm-transformers", "vlm-sglang-client"]
|
|
|
preferred_option = "pipeline"
|
|
|
backend = gr.Dropdown(drop_list, label="Backend", value=preferred_option)
|
|
|
- # with gr.Row(visible=False) as lang_options:
|
|
|
-
|
|
|
with gr.Row(visible=False) as client_options:
|
|
|
url = gr.Textbox(label='Server URL', value='http://localhost:30000', placeholder='http://localhost:30000')
|
|
|
with gr.Row(equal_height=True):
|