Bläddra i källkod

refactor: add DonutSwin model implementation and enhance character decoding logic

myhloli 5 månader sedan
förälder
incheckning
7230bfe343

+ 2 - 0
mineru/model/ocr/paddleocr2pytorch/pytorchocr/modeling/backbones/__init__.py

@@ -20,6 +20,7 @@ def build_backbone(config, model_type):
         from .det_mobilenet_v3 import MobileNetV3
         from .rec_hgnet import PPHGNet_small
         from .rec_lcnetv3 import PPLCNetV3
+        from .rec_pphgnetv2 import PPHGNetV2_B4
 
         support_dict = [
             "MobileNetV3",
@@ -28,6 +29,7 @@ def build_backbone(config, model_type):
             "ResNet_SAST",
             "PPLCNetV3",
             "PPHGNet_small",
+            'PPHGNetV2_B4',
         ]
     elif model_type == "rec" or model_type == "cls":
         from .rec_hgnet import PPHGNet_small

+ 1277 - 0
mineru/model/ocr/paddleocr2pytorch/pytorchocr/modeling/backbones/rec_donut_swin.py

@@ -0,0 +1,1277 @@
+import collections.abc
+from collections import OrderedDict
+import math
+from dataclasses import dataclass
+from typing import Optional, Tuple, Union
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+
+class DonutSwinConfig(object):
+    model_type = "donut-swin"
+
+    attribute_map = {
+        "num_attention_heads": "num_heads",
+        "num_hidden_layers": "num_layers",
+    }
+
+    def __init__(
+        self,
+        image_size=224,
+        patch_size=4,
+        num_channels=3,
+        embed_dim=96,
+        depths=[2, 2, 6, 2],
+        num_heads=[3, 6, 12, 24],
+        window_size=7,
+        mlp_ratio=4.0,
+        qkv_bias=True,
+        hidden_dropout_prob=0.0,
+        attention_probs_dropout_prob=0.0,
+        drop_path_rate=0.1,
+        hidden_act="gelu",
+        use_absolute_embeddings=False,
+        initializer_range=0.02,
+        layer_norm_eps=1e-5,
+        **kwargs,
+    ):
+        super().__init__()
+
+        self.image_size = image_size
+        self.patch_size = patch_size
+        self.num_channels = num_channels
+        self.embed_dim = embed_dim
+        self.depths = depths
+        self.num_layers = len(depths)
+        self.num_heads = num_heads
+        self.window_size = window_size
+        self.mlp_ratio = mlp_ratio
+        self.qkv_bias = qkv_bias
+        self.hidden_dropout_prob = hidden_dropout_prob
+        self.attention_probs_dropout_prob = attention_probs_dropout_prob
+        self.drop_path_rate = drop_path_rate
+        self.hidden_act = hidden_act
+        self.use_absolute_embeddings = use_absolute_embeddings
+        self.layer_norm_eps = layer_norm_eps
+        self.initializer_range = initializer_range
+        self.hidden_size = int(embed_dim * 2 ** (len(depths) - 1))
+
+        for key, value in kwargs.items():
+            try:
+                setattr(self, key, value)
+            except AttributeError as err:
+                print(f"Can't set {key} with value {value} for {self}")
+                raise err
+
+
+@dataclass
+# Copied from transformers.models.swin.modeling_swin.SwinEncoderOutput with Swin->DonutSwin
+class DonutSwinEncoderOutput(OrderedDict):
+    last_hidden_state = None
+    hidden_states = None
+    attentions = None
+    reshaped_hidden_states = None
+
+    def __init__(self, *args, **kwargs):
+        super().__init__(*args, **kwargs)
+
+    def __getitem__(self, k):
+        if isinstance(k, str):
+            inner_dict = dict(self.items())
+            return inner_dict[k]
+        else:
+            return self.to_tuple()[k]
+
+    def __setattr__(self, name, value):
+        if name in self.keys() and value is not None:
+            super().__setitem__(name, value)
+        super().__setattr__(name, value)
+
+    def __setitem__(self, key, value):
+        super().__setitem__(key, value)
+        super().__setattr__(key, value)
+
+    def to_tuple(self):
+        """
+        Convert self to a tuple containing all the attributes/keys that are not `None`.
+        """
+        return tuple(self[k] for k in self.keys())
+
+
+@dataclass
+# Copied from transformers.models.swin.modeling_swin.SwinModelOutput with Swin->DonutSwin
+class DonutSwinModelOutput(OrderedDict):
+    last_hidden_state = None
+    pooler_output = None
+    hidden_states = None
+    attentions = None
+    reshaped_hidden_states = None
+
+    def __init__(self, *args, **kwargs):
+        super().__init__(*args, **kwargs)
+
+    def __getitem__(self, k):
+        if isinstance(k, str):
+            inner_dict = dict(self.items())
+            return inner_dict[k]
+        else:
+            return self.to_tuple()[k]
+
+    def __setattr__(self, name, value):
+        if name in self.keys() and value is not None:
+            super().__setitem__(name, value)
+        super().__setattr__(name, value)
+
+    def __setitem__(self, key, value):
+        super().__setitem__(key, value)
+        super().__setattr__(key, value)
+
+    def to_tuple(self):
+        """
+        Convert self to a tuple containing all the attributes/keys that are not `None`.
+        """
+        return tuple(self[k] for k in self.keys())
+
+
+# Copied from transformers.models.swin.modeling_swin.window_partition
+def window_partition(input_feature, window_size):
+    """
+    Partitions the given input into windows.
+    """
+    batch_size, height, width, num_channels = input_feature.shape
+    input_feature = input_feature.reshape(
+        [
+            batch_size,
+            height // window_size,
+            window_size,
+            width // window_size,
+            window_size,
+            num_channels,
+        ]
+    )
+    windows = input_feature.transpose([0, 1, 3, 2, 4, 5]).reshape(
+        [-1, window_size, window_size, num_channels]
+    )
+    return windows
+
+
+# Copied from transformers.models.swin.modeling_swin.window_reverse
+def window_reverse(windows, window_size, height, width):
+    """
+    Merges windows to produce higher resolution features.
+    """
+    num_channels = windows.shape[-1]
+    windows = windows.reshape(
+        [
+            -1,
+            height // window_size,
+            width // window_size,
+            window_size,
+            window_size,
+            num_channels,
+        ]
+    )
+    windows = windows.transpose([0, 1, 3, 2, 4, 5]).reshape(
+        [-1, height, width, num_channels]
+    )
+    return windows
+
+
+# Copied from transformers.models.swin.modeling_swin.SwinEmbeddings with Swin->DonutSwin
+class DonutSwinEmbeddings(nn.Module):
+    """
+    Construct the patch and position embeddings. Optionally, also the mask token.
+    """
+
+    def __init__(self, config, use_mask_token=False):
+        super().__init__()
+
+        self.patch_embeddings = DonutSwinPatchEmbeddings(config)
+        num_patches = self.patch_embeddings.num_patches
+        self.patch_grid = self.patch_embeddings.grid_size
+        if use_mask_token:
+            # self.mask_token = paddle.create_parameter(
+            #     [1, 1, config.embed_dim], dtype="float32"
+            # )
+            self.mask_token = nn.Parameter(
+                nn.init.xavier_uniform_(torch.zeros(1, 1, config.embed_dim).to(torch.float32))
+            )
+            nn.init.zeros_(self.mask_token)
+        else:
+            self.mask_token = None
+        if config.use_absolute_embeddings:
+            # self.position_embeddings = paddle.create_parameter(
+            #     [1, num_patches + 1, config.embed_dim], dtype="float32"
+            # )
+            self.position_embeddings = nn.Parameter(
+                nn.init.xavier_uniform_(torch.zeros(1, num_patches + 1, config.embed_dim).to(torch.float32))
+            )
+            nn.init.zeros_(self.position_embedding)
+        else:
+            self.position_embeddings = None
+
+        self.norm = nn.LayerNorm(config.embed_dim)
+        self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+    def forward(self, pixel_values, bool_masked_pos=None):
+
+        embeddings, output_dimensions = self.patch_embeddings(pixel_values)
+        embeddings = self.norm(embeddings)
+
+        batch_size, seq_len, _ = embeddings.shape
+
+        if bool_masked_pos is not None:
+            mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
+            mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
+            embeddings = embeddings * (1.0 - mask) + mask_tokens * mask
+
+        if self.position_embeddings is not None:
+            embeddings = embeddings + self.position_embeddings
+        embeddings = self.dropout(embeddings)
+        return embeddings, output_dimensions
+
+
+class MyConv2d(nn.Conv2d):
+    def __init__(
+        self,
+        in_channel,
+        out_channels,
+        kernel_size,
+        stride=1,
+        padding="SAME",
+        dilation=1,
+        groups=1,
+        bias_attr=False,
+        eps=1e-6,
+    ):
+        super().__init__(
+            in_channel,
+            out_channels,
+            kernel_size,
+            stride=stride,
+            padding=padding,
+            dilation=dilation,
+            groups=groups,
+            bias_attr=bias_attr,
+        )
+        # self.weight = paddle.create_parameter(
+        #     [out_channels, in_channel, kernel_size[0], kernel_size[1]], dtype="float32"
+        # )
+        self.weight = torch.Parameter(
+            nn.init.xavier_uniform_(
+                torch.zeros(out_channels, in_channel, kernel_size[0], kernel_size[1]).to(torch.float32)
+            )
+        )
+        # self.bias = paddle.create_parameter([out_channels], dtype="float32")
+        self.bias = torch.Parameter(
+            nn.init.xavier_uniform_(
+                torch.zeros(out_channels).to(torch.float32)
+            )
+        )
+        nn.init.ones_(self.weight)
+        nn.init.zeros_(self.bias)
+
+    def forward(self, x):
+        x = F.conv2d(
+            x,
+            self.weight,
+            self.bias,
+            self._stride,
+            self._padding,
+            self._dilation,
+            self._groups,
+        )
+        return x
+
+
+# Copied from transformers.models.swin.modeling_swin.SwinPatchEmbeddings
+class DonutSwinPatchEmbeddings(nn.Module):
+    """
+    This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
+    `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
+    Transformer.
+    """
+
+    def __init__(self, config):
+        super().__init__()
+        image_size, patch_size = config.image_size, config.patch_size
+        num_channels, hidden_size = config.num_channels, config.embed_dim
+        image_size = (
+            image_size
+            if isinstance(image_size, collections.abc.Iterable)
+            else (image_size, image_size)
+        )
+        patch_size = (
+            patch_size
+            if isinstance(patch_size, collections.abc.Iterable)
+            else (patch_size, patch_size)
+        )
+        num_patches = (image_size[1] // patch_size[1]) * (
+            image_size[0] // patch_size[0]
+        )
+        self.image_size = image_size
+        self.patch_size = patch_size
+        self.num_channels = num_channels
+        self.num_patches = num_patches
+        self.is_export = config.is_export
+        self.grid_size = (
+            image_size[0] // patch_size[0],
+            image_size[1] // patch_size[1],
+        )
+        self.projection = nn.Conv2D(
+            num_channels, hidden_size, kernel_size=patch_size, stride=patch_size
+        )
+
+    def maybe_pad(self, pixel_values, height, width):
+        if width % self.patch_size[1] != 0:
+            pad_values = (0, self.patch_size[1] - width % self.patch_size[1])
+            if self.is_export:
+                pad_values = torch.tensor(pad_values, dtype=torch.int32)
+            pixel_values = nn.functional.pad(pixel_values, pad_values)
+        if height % self.patch_size[0] != 0:
+            pad_values = (0, 0, 0, self.patch_size[0] - height % self.patch_size[0])
+            if self.is_export:
+                pad_values = torch.tensor(pad_values, dtype=torch.int32)
+            pixel_values = nn.functional.pad(pixel_values, pad_values)
+        return pixel_values
+
+    def forward(self, pixel_values) -> Tuple[torch.Tensor, Tuple[int]]:
+        _, num_channels, height, width = pixel_values.shape
+        if num_channels != self.num_channels:
+            raise ValueError(
+                "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
+            )
+        pixel_values = self.maybe_pad(pixel_values, height, width)
+        embeddings = self.projection(pixel_values)
+
+        _, _, height, width = embeddings.shape
+        output_dimensions = (height, width)
+        embeddings = embeddings.flatten(2).transpose([0, 2, 1])
+
+        return embeddings, output_dimensions
+
+
+# Copied from transformers.models.swin.modeling_swin.SwinPatchMerging
+class DonutSwinPatchMerging(nn.Module):
+    """
+    Patch Merging Layer.
+
+    Args:
+        input_resolution (`Tuple[int]`):
+            Resolution of input feature.
+        dim (`int`):
+            Number of input channels.
+        norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`):
+            Normalization layer class.
+    """
+
+    def __init__(
+        self,
+        input_resolution: Tuple[int],
+        dim: int,
+        norm_layer: nn.Module = nn.LayerNorm,
+        is_export=False,
+    ):
+        super().__init__()
+        self.input_resolution = input_resolution
+        self.dim = dim
+        self.reduction = nn.Linear(4 * dim, 2 * dim, bias_attr=False)
+        self.norm = norm_layer(4 * dim)
+        self.is_export = is_export
+
+    def maybe_pad(self, input_feature, height, width):
+        should_pad = (height % 2 == 1) or (width % 2 == 1)
+        if should_pad:
+            pad_values = (0, 0, 0, width % 2, 0, height % 2)
+            if self.is_export:
+                pad_values = torch.tensor(pad_values, dtype=torch.int32)
+            input_feature = nn.functional.pad(input_feature, pad_values)
+
+        return input_feature
+
+    def forward(
+        self, input_feature: torch.Tensor, input_dimensions: Tuple[int, int]
+    ) -> torch.Tensor:
+        height, width = input_dimensions
+        batch_size, dim, num_channels = input_feature.shape
+
+        input_feature = input_feature.reshape([batch_size, height, width, num_channels])
+
+        input_feature = self.maybe_pad(input_feature, height, width)
+        input_feature_0 = input_feature[:, 0::2, 0::2, :]
+        input_feature_1 = input_feature[:, 1::2, 0::2, :]
+        input_feature_2 = input_feature[:, 0::2, 1::2, :]
+        input_feature_3 = input_feature[:, 1::2, 1::2, :]
+        input_feature = torch.cat(
+            [input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1
+        )
+        input_feature = input_feature.reshape(
+            [batch_size, -1, 4 * num_channels]
+        )  # batch_size height/2*width/2 4*C
+
+        input_feature = self.norm(input_feature)
+        input_feature = self.reduction(input_feature)
+
+        return input_feature
+
+
+# Copied from transformers.models.beit.modeling_beit.drop_path
+def drop_path(
+    input: torch.Tensor, drop_prob: float = 0.0, training: bool = False
+) -> torch.Tensor:
+    if drop_prob == 0.0 or not training:
+        return input
+    keep_prob = 1 - drop_prob
+    shape = (input.shape[0],) + (1,) * (
+        input.ndim - 1
+    )  # work with diff dim tensors, not just 2D ConvNets
+    random_tensor = keep_prob + torch.rand(
+        shape,
+        dtype=input.dtype,
+    )
+    random_tensor.floor_()  # binarize
+    output = input / keep_prob * random_tensor
+    return output
+
+
+# Copied from transformers.models.swin.modeling_swin.SwinDropPath
+class DonutSwinDropPath(nn.Module):
+    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
+
+    def __init__(self, drop_prob: Optional[float] = None) -> None:
+        super().__init__()
+        self.drop_prob = drop_prob
+
+    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+        return drop_path(hidden_states, self.drop_prob, self.training)
+
+    def extra_repr(self) -> str:
+        return "p={}".format(self.drop_prob)
+
+
+class DonutSwinSelfAttention(nn.Module):
+    def __init__(self, config, dim, num_heads, window_size):
+        super().__init__()
+        if dim % num_heads != 0:
+            raise ValueError(
+                f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})"
+            )
+
+        self.num_attention_heads = num_heads
+        self.attention_head_size = int(dim / num_heads)
+        self.all_head_size = self.num_attention_heads * self.attention_head_size
+        self.window_size = (
+            window_size
+            if isinstance(window_size, collections.abc.Iterable)
+            else (window_size, window_size)
+        )
+        # self.relative_position_bias_table = paddle.create_parameter(
+        #     [(2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), num_heads],
+        #     dtype="float32",
+        # )
+        self.relative_position_bias_table = torch.Parameter(
+            nn.init.xavier_normal_(
+                torch.zeros((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), num_heads).to(torch.float32)
+            )
+        )
+
+        nn.init.zeros_(self.relative_position_bias_table)
+
+        # get pair-wise relative position index for each token inside the window
+        coords_h = torch.arange(self.window_size[0])
+        coords_w = torch.arange(self.window_size[1])
+        coords = torch.stack(torch.meshgrid(coords_h, coords_w, indexing="ij"))
+        coords_flatten = torch.flatten(coords, 1)
+        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
+        relative_coords = relative_coords.transpose([1, 2, 0])
+        relative_coords[:, :, 0] += self.window_size[0] - 1
+        relative_coords[:, :, 1] += self.window_size[1] - 1
+        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
+        relative_position_index = relative_coords.sum(-1)
+        self.register_buffer("relative_position_index", relative_position_index)
+
+        self.query = nn.Linear(
+            self.all_head_size, self.all_head_size, bias_attr=config.qkv_bias
+        )
+        self.key = nn.Linear(
+            self.all_head_size, self.all_head_size, bias_attr=config.qkv_bias
+        )
+        self.value = nn.Linear(
+            self.all_head_size, self.all_head_size, bias_attr=config.qkv_bias
+        )
+
+        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+
+    def transpose_for_scores(self, x):
+        new_x_shape = x.shape[:-1] + [
+            self.num_attention_heads,
+            self.attention_head_size,
+        ]
+        x = x.reshape(new_x_shape)
+        return x.transpose([0, 2, 1, 3])
+
+    def forward(
+        self,
+        hidden_states: torch.Tensor,
+        attention_mask=None,
+        head_mask=None,
+        output_attentions=False,
+    ) -> Tuple[torch.Tensor]:
+        batch_size, dim, num_channels = hidden_states.shape
+        mixed_query_layer = self.query(hidden_states)
+        key_layer = self.transpose_for_scores(self.key(hidden_states))
+        value_layer = self.transpose_for_scores(self.value(hidden_states))
+        query_layer = self.transpose_for_scores(mixed_query_layer)
+
+        # Take the dot product between "query" and "key" to get the raw attention scores.
+        attention_scores = torch.matmul(query_layer, key_layer.transpose([0, 1, 3, 2]))
+
+        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+
+        relative_position_bias = self.relative_position_bias_table[
+            self.relative_position_index.reshape([-1])
+        ]
+        relative_position_bias = relative_position_bias.reshape(
+            [
+                self.window_size[0] * self.window_size[1],
+                self.window_size[0] * self.window_size[1],
+                -1,
+            ]
+        )
+
+        relative_position_bias = relative_position_bias.transpose([2, 0, 1])
+        attention_scores = attention_scores + relative_position_bias.unsqueeze(0)
+
+        if attention_mask is not None:
+            # Apply the attention mask is (precomputed for all layers in DonutSwinModel forward() function)
+            mask_shape = attention_mask.shape[0]
+            attention_scores = attention_scores.reshape(
+                [
+                    batch_size // mask_shape,
+                    mask_shape,
+                    self.num_attention_heads,
+                    dim,
+                    dim,
+                ]
+            )
+            attention_scores = attention_scores + attention_mask.unsqueeze(1).unsqueeze(
+                0
+            )
+            attention_scores = attention_scores.reshape(
+                [-1, self.num_attention_heads, dim, dim]
+            )
+
+        # Normalize the attention scores to probabilities.
+        attention_probs = nn.functional.softmax(attention_scores, axis=-1)
+
+        # This is actually dropping out entire tokens to attend to, which might
+        # seem a bit unusual, but is taken from the original Transformer paper.
+        attention_probs = self.dropout(attention_probs)
+
+        # Mask heads if we want to
+        if head_mask is not None:
+            attention_probs = attention_probs * head_mask
+
+        context_layer = torch.matmul(attention_probs, value_layer)
+        context_layer = context_layer.transpose([0, 2, 1, 3])
+        new_context_layer_shape = tuple(context_layer.shape[:-2]) + (
+            self.all_head_size,
+        )
+        context_layer = context_layer.reshape(new_context_layer_shape)
+        outputs = (
+            (context_layer, attention_probs) if output_attentions else (context_layer,)
+        )
+        return outputs
+
+
+# Copied from transformers.models.swin.modeling_swin.SwinSelfOutput
+class DonutSwinSelfOutput(nn.Module):
+    def __init__(self, config, dim):
+        super().__init__()
+        self.dense = nn.Linear(dim, dim)
+        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+
+    def forward(
+        self, hidden_states: torch.Tensor, input_tensor: torch.Tensor
+    ) -> torch.Tensor:
+        hidden_states = self.dense(hidden_states)
+        hidden_states = self.dropout(hidden_states)
+
+        return hidden_states
+
+
+# Copied from transformers.models.swin.modeling_swin.SwinAttention with Swin->DonutSwin
+class DonutSwinAttention(nn.Module):
+    def __init__(self, config, dim, num_heads, window_size):
+        super().__init__()
+        self.self = DonutSwinSelfAttention(config, dim, num_heads, window_size)
+        self.output = DonutSwinSelfOutput(config, dim)
+        self.pruned_heads = set()
+
+    def forward(
+        self,
+        hidden_states: torch.Tensor,
+        attention_mask=None,
+        head_mask=None,
+        output_attentions=False,
+    ) -> Tuple[torch.Tensor]:
+        self_outputs = self.self(
+            hidden_states, attention_mask, head_mask, output_attentions
+        )
+        attention_output = self.output(self_outputs[0], hidden_states)
+        outputs = (attention_output,) + self_outputs[
+            1:
+        ]  # add attentions if we output them
+        return outputs
+
+
+# Copied from transformers.models.swin.modeling_swin.SwinIntermediate
+class DonutSwinIntermediate(nn.Module):
+    def __init__(self, config, dim):
+        super().__init__()
+        self.dense = nn.Linear(dim, int(config.mlp_ratio * dim))
+        self.intermediate_act_fn = F.gelu
+
+    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+        hidden_states = self.dense(hidden_states)
+        hidden_states = self.intermediate_act_fn(hidden_states)
+        return hidden_states
+
+
+# Copied from transformers.models.swin.modeling_swin.SwinOutput
+class DonutSwinOutput(nn.Module):
+    def __init__(self, config, dim):
+        super().__init__()
+        self.dense = nn.Linear(int(config.mlp_ratio * dim), dim)
+        self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+        hidden_states = self.dense(hidden_states)
+        hidden_states = self.dropout(hidden_states)
+        return hidden_states
+
+
+# Copied from transformers.models.swin.modeling_swin.SwinLayer with Swin->DonutSwin
+class DonutSwinLayer(nn.Module):
+    def __init__(self, config, dim, input_resolution, num_heads, shift_size=0):
+        super().__init__()
+        self.chunk_size_feed_forward = config.chunk_size_feed_forward
+        self.shift_size = shift_size
+        self.window_size = config.window_size
+        self.input_resolution = input_resolution
+        self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps)
+        self.attention = DonutSwinAttention(
+            config, dim, num_heads, window_size=self.window_size
+        )
+        self.drop_path = (
+            DonutSwinDropPath(config.drop_path_rate)
+            if config.drop_path_rate > 0.0
+            else nn.Identity()
+        )
+        self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps)
+        self.intermediate = DonutSwinIntermediate(config, dim)
+        self.output = DonutSwinOutput(config, dim)
+        self.is_export = config.is_export
+
+    def set_shift_and_window_size(self, input_resolution):
+        if min(input_resolution) <= self.window_size:
+            # if window size is larger than input resolution, we don't partition windows
+            self.shift_size = 0
+            self.window_size = min(input_resolution)
+
+    def get_attn_mask_export(self, height, width, dtype):
+
+        attn_mask = None
+        height_slices = (
+            slice(0, -self.window_size),
+            slice(-self.window_size, -self.shift_size),
+            slice(-self.shift_size, None),
+        )
+        width_slices = (
+            slice(0, -self.window_size),
+            slice(-self.window_size, -self.shift_size),
+            slice(-self.shift_size, None),
+        )
+        img_mask = torch.zeros((1, height, width, 1), dtype=dtype)
+        count = 0
+        for height_slice in height_slices:
+            for width_slice in width_slices:
+                if self.shift_size > 0:
+                    img_mask[:, height_slice, width_slice, :] = count
+                    count += 1
+        if torch.Tensor(self.shift_size > 0).to(torch.bool):
+            # calculate attention mask for SW-MSA
+            mask_windows = window_partition(img_mask, self.window_size)
+            mask_windows = mask_windows.reshape(
+                [-1, self.window_size * self.window_size]
+            )
+            attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
+            attn_mask = attn_mask.masked_fill(
+                attn_mask != 0, float(-100.0)
+            ).masked_fill(attn_mask == 0, float(0.0))
+
+        return attn_mask
+
+    def get_attn_mask(self, height, width, dtype):
+        if self.shift_size > 0:
+            # calculate attention mask for SW-MSA
+            img_mask = torch.zeros((1, height, width, 1), dtype=dtype)
+            height_slices = (
+                slice(0, -self.window_size),
+                slice(-self.window_size, -self.shift_size),
+                slice(-self.shift_size, None),
+            )
+            width_slices = (
+                slice(0, -self.window_size),
+                slice(-self.window_size, -self.shift_size),
+                slice(-self.shift_size, None),
+            )
+
+            count = 0
+            for height_slice in height_slices:
+                for width_slice in width_slices:
+                    img_mask[:, height_slice, width_slice, :] = count
+                    count += 1
+
+            mask_windows = window_partition(img_mask, self.window_size)
+            mask_windows = mask_windows.reshape(
+                [-1, self.window_size * self.window_size]
+            )
+            attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
+            attn_mask = attn_mask.masked_fill(
+                attn_mask != 0, float(-100.0)
+            ).masked_fill(attn_mask == 0, float(0.0))
+        else:
+            attn_mask = None
+        return attn_mask
+
+    def maybe_pad(self, hidden_states, height, width):
+        pad_right = (self.window_size - width % self.window_size) % self.window_size
+        pad_bottom = (self.window_size - height % self.window_size) % self.window_size
+        pad_values = (0, 0, 0, pad_bottom, 0, pad_right, 0, 0)
+        hidden_states = nn.functional.pad(hidden_states, pad_values)
+        return hidden_states, pad_values
+
+    def forward(
+        self,
+        hidden_states: torch.Tensor,
+        input_dimensions: Tuple[int, int],
+        head_mask=None,
+        output_attentions=False,
+        always_partition=False,
+    ) -> Tuple[torch.Tensor, torch.Tensor]:
+        if not always_partition:
+            self.set_shift_and_window_size(input_dimensions)
+        else:
+            pass
+        height, width = input_dimensions
+        batch_size, _, channels = hidden_states.shape
+        shortcut = hidden_states
+
+        hidden_states = self.layernorm_before(hidden_states)
+
+        hidden_states = hidden_states.reshape([batch_size, height, width, channels])
+
+        # pad hidden_states to multiples of window size
+        hidden_states, pad_values = self.maybe_pad(hidden_states, height, width)
+
+        _, height_pad, width_pad, _ = hidden_states.shape
+
+        # cyclic shift
+        if self.shift_size > 0:
+            shift_value = (-self.shift_size, -self.shift_size)
+            if self.is_export:
+                shift_value = torch.tensor(shift_value, dtype=torch.int32)
+            shifted_hidden_states = torch.roll(
+                hidden_states, shifts=shift_value, dims=(1, 2)
+            )
+        else:
+            shifted_hidden_states = hidden_states
+
+        # partition windows
+        hidden_states_windows = window_partition(
+            shifted_hidden_states, self.window_size
+        )
+        hidden_states_windows = hidden_states_windows.reshape(
+            [-1, self.window_size * self.window_size, channels]
+        )
+        attn_mask = self.get_attn_mask(height_pad, width_pad, dtype=hidden_states.dtype)
+
+        attention_outputs = self.attention(
+            hidden_states_windows,
+            attn_mask,
+            head_mask,
+            output_attentions=output_attentions,
+        )
+        attention_output = attention_outputs[0]
+
+        attention_windows = attention_output.reshape(
+            [-1, self.window_size, self.window_size, channels]
+        )
+        shifted_windows = window_reverse(
+            attention_windows, self.window_size, height_pad, width_pad
+        )
+        # reverse cyclic shift
+        if self.shift_size > 0:
+            shift_value = (self.shift_size, self.shift_size)
+            if self.is_export:
+                shift_value = torch.tensor(shift_value, dtype=torch.int32)
+            attention_windows = torch.roll(
+                shifted_windows, shifts=shift_value, dims=(1, 2)
+            )
+        else:
+            attention_windows = shifted_windows
+
+        was_padded = pad_values[3] > 0 or pad_values[5] > 0
+        if was_padded:
+            attention_windows = attention_windows[:, :height, :width, :].contiguous()
+
+        attention_windows = attention_windows.reshape(
+            [batch_size, height * width, channels]
+        )
+        hidden_states = shortcut + self.drop_path(attention_windows)
+        layer_output = self.layernorm_after(hidden_states)
+        layer_output = self.intermediate(layer_output)
+        layer_output = hidden_states + self.output(layer_output)
+        layer_outputs = (
+            (layer_output, attention_outputs[1])
+            if output_attentions
+            else (layer_output,)
+        )
+        return layer_outputs
+
+
+# Copied from transformers.models.swin.modeling_swin.SwinStage with Swin->DonutSwin
+class DonutSwinStage(nn.Module):
+    def __init__(
+        self, config, dim, input_resolution, depth, num_heads, drop_path, downsample
+    ):
+        super().__init__()
+        self.config = config
+        self.dim = dim
+        self.blocks = nn.ModuleList(
+            [
+                DonutSwinLayer(
+                    config=config,
+                    dim=dim,
+                    input_resolution=input_resolution,
+                    num_heads=num_heads,
+                    shift_size=0 if (i % 2 == 0) else config.window_size // 2,
+                )
+                for i in range(depth)
+            ]
+        )
+        self.is_export = config.is_export
+
+        # patch merging layer
+        if downsample is not None:
+            self.downsample = downsample(
+                input_resolution,
+                dim=dim,
+                norm_layer=nn.LayerNorm,
+                is_export=self.is_export,
+            )
+        else:
+            self.downsample = None
+
+        self.pointing = False
+
+    def forward(
+        self,
+        hidden_states: torch.Tensor,
+        input_dimensions: Tuple[int, int],
+        head_mask=None,
+        output_attentions=False,
+        always_partition=False,
+    ) -> Tuple[torch.Tensor]:
+        height, width = input_dimensions
+
+        for i, layer_module in enumerate(self.blocks):
+            layer_head_mask = head_mask[i] if head_mask is not None else None
+
+            layer_outputs = layer_module(
+                hidden_states,
+                input_dimensions,
+                layer_head_mask,
+                output_attentions,
+                always_partition,
+            )
+
+            hidden_states = layer_outputs[0]
+
+        hidden_states_before_downsampling = hidden_states
+        if self.downsample is not None:
+            height_downsampled, width_downsampled = (height + 1) // 2, (width + 1) // 2
+            output_dimensions = (height, width, height_downsampled, width_downsampled)
+            hidden_states = self.downsample(
+                hidden_states_before_downsampling, input_dimensions
+            )
+        else:
+            output_dimensions = (height, width, height, width)
+
+        stage_outputs = (
+            hidden_states,
+            hidden_states_before_downsampling,
+            output_dimensions,
+        )
+
+        if output_attentions:
+            stage_outputs += layer_outputs[1:]
+        return stage_outputs
+
+
+# Copied from transformers.models.swin.modeling_swin.SwinEncoder with Swin->DonutSwin
+class DonutSwinEncoder(nn.Module):
+    def __init__(self, config, grid_size):
+        super().__init__()
+        self.num_layers = len(config.depths)
+        self.config = config
+        dpr = [
+            x.item()
+            for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))
+        ]
+        self.layers = nn.ModuleList(
+            [
+                DonutSwinStage(
+                    config=config,
+                    dim=int(config.embed_dim * 2**i_layer),
+                    input_resolution=(
+                        grid_size[0] // (2**i_layer),
+                        grid_size[1] // (2**i_layer),
+                    ),
+                    depth=config.depths[i_layer],
+                    num_heads=config.num_heads[i_layer],
+                    drop_path=dpr[
+                        sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])
+                    ],
+                    downsample=(
+                        DonutSwinPatchMerging
+                        if (i_layer < self.num_layers - 1)
+                        else None
+                    ),
+                )
+                for i_layer in range(self.num_layers)
+            ]
+        )
+
+        self.gradient_checkpointing = False
+
+    def forward(
+        self,
+        hidden_states: torch.Tensor,
+        input_dimensions: Tuple[int, int],
+        head_mask=None,
+        output_attentions=False,
+        output_hidden_states=False,
+        output_hidden_states_before_downsampling=False,
+        always_partition=False,
+        return_dict=True,
+    ):
+        all_hidden_states = () if output_hidden_states else None
+        all_reshaped_hidden_states = () if output_hidden_states else None
+        all_self_attentions = () if output_attentions else None
+
+        if output_hidden_states:
+            batch_size, _, hidden_size = hidden_states.shape
+            reshaped_hidden_state = hidden_states.view(
+                batch_size, *input_dimensions, hidden_size
+            )
+            reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
+            all_hidden_states += (hidden_states,)
+            all_reshaped_hidden_states += (reshaped_hidden_state,)
+
+        for i, layer_module in enumerate(self.layers):
+            layer_head_mask = head_mask[i] if head_mask is not None else None
+
+            if self.gradient_checkpointing and self.training:
+                layer_outputs = self._gradient_checkpointing_func(
+                    layer_module.__call__,
+                    hidden_states,
+                    input_dimensions,
+                    layer_head_mask,
+                    output_attentions,
+                    always_partition,
+                )
+            else:
+                layer_outputs = layer_module(
+                    hidden_states,
+                    input_dimensions,
+                    layer_head_mask,
+                    output_attentions,
+                    always_partition,
+                )
+
+            hidden_states = layer_outputs[0]
+
+            hidden_states_before_downsampling = layer_outputs[1]
+            output_dimensions = layer_outputs[2]
+
+            input_dimensions = (output_dimensions[-2], output_dimensions[-1])
+
+            if output_hidden_states and output_hidden_states_before_downsampling:
+                batch_size, _, hidden_size = hidden_states_before_downsampling.shape
+                reshaped_hidden_state = hidden_states_before_downsampling.reshape(
+                    [
+                        batch_size,
+                        *(output_dimensions[0], output_dimensions[1]),
+                        hidden_size,
+                    ]
+                )
+                reshaped_hidden_state = reshaped_hidden_state.transpose([0, 3, 1, 2])
+                all_hidden_states += (hidden_states_before_downsampling,)
+                all_reshaped_hidden_states += (reshaped_hidden_state,)
+            elif output_hidden_states and not output_hidden_states_before_downsampling:
+                batch_size, _, hidden_size = hidden_states.shape
+                reshaped_hidden_state = hidden_states.reshape(
+                    [batch_size, *input_dimensions, hidden_size]
+                )
+                reshaped_hidden_state = reshaped_hidden_state.transpose([0, 3, 1, 2])
+                all_hidden_states += (hidden_states,)
+                all_reshaped_hidden_states += (reshaped_hidden_state,)
+
+            if output_attentions:
+                all_self_attentions += layer_outputs[3:]
+
+        if not return_dict:
+            return tuple(
+                v
+                for v in [hidden_states, all_hidden_states, all_self_attentions]
+                if v is not None
+            )
+
+        return DonutSwinEncoderOutput(
+            last_hidden_state=hidden_states,
+            hidden_states=all_hidden_states,
+            attentions=all_self_attentions,
+            reshaped_hidden_states=all_reshaped_hidden_states,
+        )
+
+
+class DonutSwinPreTrainedModel(nn.Module):
+    """
+    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+    models.
+    """
+
+    config_class = DonutSwinConfig
+    base_model_prefix = "swin"
+    main_input_name = "pixel_values"
+    supports_gradient_checkpointing = True
+
+    def _init_weights(self, module):
+        """Initialize the weights"""
+        if isinstance(module, (nn.Linear, nn.Conv2D)):
+            # normal_ = Normal(mean=0.0, std=self.config.initializer_range)
+            nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
+            if module.bias is not None:
+                nn.init.zeros_(module.bias)
+        elif isinstance(module, nn.LayerNorm):
+            nn.init.zeros_(module.bias)
+            nn.init.ones_(module.weight)
+
+    def _initialize_weights(self, module):
+        """
+        Initialize the weights if they are not already initialized.
+        """
+        if getattr(module, "_is_hf_initialized", False):
+            return
+        self._init_weights(module)
+
+    def post_init(self):
+        self.apply(self._initialize_weights)
+
+    def get_head_mask(self, head_mask, num_hidden_layers, is_attention_chunked=False):
+        if head_mask is not None:
+            head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers)
+            if is_attention_chunked is True:
+                head_mask = head_mask.unsqueeze(-1)
+        else:
+            head_mask = [None] * num_hidden_layers
+
+        return head_mask
+
+
+class DonutSwinModel(DonutSwinPreTrainedModel):
+    def __init__(
+        self,
+        in_channels=3,
+        hidden_size=1024,
+        num_layers=4,
+        num_heads=[4, 8, 16, 32],
+        add_pooling_layer=True,
+        use_mask_token=False,
+        is_export=False,
+    ):
+        super().__init__()
+        donut_swin_config = {
+            "return_dict": True,
+            "output_hidden_states": False,
+            "output_attentions": False,
+            "use_bfloat16": False,
+            "tf_legacy_loss": False,
+            "pruned_heads": {},
+            "tie_word_embeddings": True,
+            "chunk_size_feed_forward": 0,
+            "is_encoder_decoder": False,
+            "is_decoder": False,
+            "cross_attention_hidden_size": None,
+            "add_cross_attention": False,
+            "tie_encoder_decoder": False,
+            "max_length": 20,
+            "min_length": 0,
+            "do_sample": False,
+            "early_stopping": False,
+            "num_beams": 1,
+            "num_beam_groups": 1,
+            "diversity_penalty": 0.0,
+            "temperature": 1.0,
+            "top_k": 50,
+            "top_p": 1.0,
+            "typical_p": 1.0,
+            "repetition_penalty": 1.0,
+            "length_penalty": 1.0,
+            "no_repeat_ngram_size": 0,
+            "encoder_no_repeat_ngram_size": 0,
+            "bad_words_ids": None,
+            "num_return_sequences": 1,
+            "output_scores": False,
+            "return_dict_in_generate": False,
+            "forced_bos_token_id": None,
+            "forced_eos_token_id": None,
+            "remove_invalid_values": False,
+            "exponential_decay_length_penalty": None,
+            "suppress_tokens": None,
+            "begin_suppress_tokens": None,
+            "architectures": None,
+            "finetuning_task": None,
+            "id2label": {0: "LABEL_0", 1: "LABEL_1"},
+            "label2id": {"LABEL_0": 0, "LABEL_1": 1},
+            "tokenizer_class": None,
+            "prefix": None,
+            "bos_token_id": None,
+            "pad_token_id": None,
+            "eos_token_id": None,
+            "sep_token_id": None,
+            "decoder_start_token_id": None,
+            "task_specific_params": None,
+            "problem_type": None,
+            "_name_or_path": "",
+            "_commit_hash": None,
+            "_attn_implementation_internal": None,
+            "transformers_version": None,
+            "hidden_size": hidden_size,
+            "num_layers": num_layers,
+            "path_norm": True,
+            "use_2d_embeddings": False,
+            "image_size": [420, 420],
+            "patch_size": 4,
+            "num_channels": in_channels,
+            "embed_dim": 128,
+            "depths": [2, 2, 14, 2],
+            "num_heads": num_heads,
+            "window_size": 5,
+            "mlp_ratio": 4.0,
+            "qkv_bias": True,
+            "hidden_dropout_prob": 0.0,
+            "attention_probs_dropout_prob": 0.0,
+            "drop_path_rate": 0.1,
+            "hidden_act": "gelu",
+            "use_absolute_embeddings": False,
+            "layer_norm_eps": 1e-05,
+            "initializer_range": 0.02,
+            "is_export": is_export,
+        }
+
+        config = DonutSwinConfig(**donut_swin_config)
+        self.config = config
+        self.num_layers = len(config.depths)
+        self.num_features = int(config.embed_dim * 2 ** (self.num_layers - 1))
+
+        self.embeddings = DonutSwinEmbeddings(config, use_mask_token=use_mask_token)
+        self.encoder = DonutSwinEncoder(config, self.embeddings.patch_grid)
+
+        self.pooler = nn.AdaptiveAvgPool1D(1) if add_pooling_layer else None
+        self.out_channels = hidden_size
+        self.post_init()
+
+    def get_input_embeddings(self):
+        return self.embeddings.patch_embeddings
+
+    def forward(
+        self,
+        input_data=None,
+        bool_masked_pos=None,
+        head_mask=None,
+        output_attentions=None,
+        output_hidden_states=None,
+        return_dict=None,
+    ) -> Union[Tuple, DonutSwinModelOutput]:
+        r"""
+        bool_masked_pos (`paddle.BoolTensor` of shape `(batch_size, num_patches)`):
+            Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
+        """
+        if self.training:
+            pixel_values, label, attention_mask = input_data
+        else:
+            if isinstance(input_data, list):
+                pixel_values = input_data[0]
+            else:
+                pixel_values = input_data
+        output_attentions = (
+            output_attentions
+            if output_attentions is not None
+            else self.config.output_attentions
+        )
+        output_hidden_states = (
+            output_hidden_states
+            if output_hidden_states is not None
+            else self.config.output_hidden_states
+        )
+        return_dict = (
+            return_dict if return_dict is not None else self.config.return_dict
+        )
+
+        if pixel_values is None:
+            raise ValueError("You have to specify pixel_values")
+        num_channels = pixel_values.shape[1]
+        if num_channels == 1:
+            pixel_values = torch.repeat_interleave(pixel_values, repeats=3, dim=1)
+
+        head_mask = self.get_head_mask(head_mask, len(self.config.depths))
+
+        embedding_output, input_dimensions = self.embeddings(
+            pixel_values, bool_masked_pos=bool_masked_pos
+        )
+
+        encoder_outputs = self.encoder(
+            embedding_output,
+            input_dimensions,
+            head_mask=head_mask,
+            output_attentions=output_attentions,
+            output_hidden_states=output_hidden_states,
+            return_dict=return_dict,
+        )
+        sequence_output = encoder_outputs[0]
+
+        pooled_output = None
+        if self.pooler is not None:
+            pooled_output = self.pooler(sequence_output.transpose([0, 2, 1]))
+            pooled_output = torch.flatten(pooled_output, 1)
+
+        if not return_dict:
+            output = (sequence_output, pooled_output) + encoder_outputs[1:]
+            return output
+
+        donut_swin_output = DonutSwinModelOutput(
+            last_hidden_state=sequence_output,
+            pooler_output=pooled_output,
+            hidden_states=encoder_outputs.hidden_states,
+            attentions=encoder_outputs.attentions,
+            reshaped_hidden_states=encoder_outputs.reshaped_hidden_states,
+        )
+        if self.training:
+            return donut_swin_output, label, attention_mask
+        else:
+            return donut_swin_output

+ 18 - 18
mineru/model/ocr/paddleocr2pytorch/pytorchocr/modeling/necks/rnn.py

@@ -9,28 +9,28 @@ class Im2Seq(nn.Module):
         super().__init__()
         self.out_channels = in_channels
 
-    # def forward(self, x):
-    #     B, C, H, W = x.shape
-    #     # assert H == 1
-    #     x = x.squeeze(dim=2)
-    #     # x = x.transpose([0, 2, 1])  # paddle (NTC)(batch, width, channels)
-    #     x = x.permute(0, 2, 1)
-    #     return x
-
     def forward(self, x):
         B, C, H, W = x.shape
-        # 处理四维张量,将空间维度展平为序列
-        if H == 1:
-            # 原来的处理逻辑,适用于H=1的情况
-            x = x.squeeze(dim=2)
-            x = x.permute(0, 2, 1)  # (B, W, C)
-        else:
-            # 处理H不为1的情况
-            x = x.permute(0, 2, 3, 1)  # (B, H, W, C)
-            x = x.reshape(B, H * W, C)  # (B, H*W, C)
-
+        # assert H == 1
+        x = x.squeeze(dim=2)
+        # x = x.transpose([0, 2, 1])  # paddle (NTC)(batch, width, channels)
+        x = x.permute(0, 2, 1)
         return x
 
+    # def forward(self, x):
+    #     B, C, H, W = x.shape
+    #     # 处理四维张量,将空间维度展平为序列
+    #     if H == 1:
+    #         # 原来的处理逻辑,适用于H=1的情况
+    #         x = x.squeeze(dim=2)
+    #         x = x.permute(0, 2, 1)  # (B, W, C)
+    #     else:
+    #         # 处理H不为1的情况
+    #         x = x.permute(0, 2, 3, 1)  # (B, H, W, C)
+    #         x = x.reshape(B, H * W, C)  # (B, H*W, C)
+    #
+    #     return x
+
 class EncoderWithRNN_(nn.Module):
     def __init__(self, in_channels, hidden_size):
         super(EncoderWithRNN_, self).__init__()

+ 4 - 4
mineru/model/ocr/paddleocr2pytorch/pytorchocr/postprocess/db_postprocess.py

@@ -124,10 +124,10 @@ class DBPostProcess(object):
         '''
         h, w = bitmap.shape[:2]
         box = _box.copy()
-        xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int64), 0, w - 1)
-        xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int64), 0, w - 1)
-        ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int64), 0, h - 1)
-        ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int64), 0, h - 1)
+        xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int if 'int' in np.__dict__ else np.int32), 0, w - 1)
+        xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int if 'int' in np.__dict__ else np.int32), 0, w - 1)
+        ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int if 'int' in np.__dict__ else np.int32), 0, h - 1)
+        ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int if 'int' in np.__dict__ else np.int32), 0, h - 1)
 
         mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
         box[:, 0] = box[:, 0] - xmin

+ 106 - 4
mineru/model/ocr/paddleocr2pytorch/pytorchocr/postprocess/rec_postprocess.py

@@ -11,6 +11,7 @@
 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 # See the License for the specific language governing permissions and
 # limitations under the License.
+import re
 import numpy as np
 import torch
 
@@ -24,8 +25,9 @@ class BaseRecLabelDecode(object):
 
         self.beg_str = "sos"
         self.end_str = "eos"
-
+        self.reverse = False
         self.character_str = []
+
         if character_dict_path is None:
             self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
             dict_character = list(self.character_str)
@@ -38,6 +40,8 @@ class BaseRecLabelDecode(object):
             if use_space_char:
                 self.character_str.append(" ")
             dict_character = list(self.character_str)
+            if "arabic" in character_dict_path:
+                self.reverse = True
 
         dict_character = self.add_special_char(dict_character)
         self.dict = {}
@@ -45,10 +49,98 @@ class BaseRecLabelDecode(object):
             self.dict[char] = i
         self.character = dict_character
 
+    def pred_reverse(self, pred):
+        pred_re = []
+        c_current = ""
+        for c in pred:
+            if not bool(re.search("[a-zA-Z0-9 :*./%+-]", c)):
+                if c_current != "":
+                    pred_re.append(c_current)
+                pred_re.append(c)
+                c_current = ""
+            else:
+                c_current += c
+        if c_current != "":
+            pred_re.append(c_current)
+
+        return "".join(pred_re[::-1])
+
     def add_special_char(self, dict_character):
         return dict_character
 
-    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
+    def get_word_info(self, text, selection):
+        """
+        Group the decoded characters and record the corresponding decoded positions.
+
+        Args:
+            text: the decoded text
+            selection: the bool array that identifies which columns of features are decoded as non-separated characters
+        Returns:
+            word_list: list of the grouped words
+            word_col_list: list of decoding positions corresponding to each character in the grouped word
+            state_list: list of marker to identify the type of grouping words, including two types of grouping words:
+                        - 'cn': continuous chinese characters (e.g., 你好啊)
+                        - 'en&num': continuous english characters (e.g., hello), number (e.g., 123, 1.123), or mixed of them connected by '-' (e.g., VGG-16)
+                        The remaining characters in text are treated as separators between groups (e.g., space, '(', ')', etc.).
+        """
+        state = None
+        word_content = []
+        word_col_content = []
+        word_list = []
+        word_col_list = []
+        state_list = []
+        valid_col = np.where(selection == True)[0]
+
+        for c_i, char in enumerate(text):
+            if "\u4e00" <= char <= "\u9fff":
+                c_state = "cn"
+            elif bool(re.search("[a-zA-Z0-9]", char)):
+                c_state = "en&num"
+            else:
+                c_state = "splitter"
+
+            if (
+                char == "."
+                and state == "en&num"
+                and c_i + 1 < len(text)
+                and bool(re.search("[0-9]", text[c_i + 1]))
+            ):  # grouping floating number
+                c_state = "en&num"
+            if (
+                char == "-" and state == "en&num"
+            ):  # grouping word with '-', such as 'state-of-the-art'
+                c_state = "en&num"
+
+            if state == None:
+                state = c_state
+
+            if state != c_state:
+                if len(word_content) != 0:
+                    word_list.append(word_content)
+                    word_col_list.append(word_col_content)
+                    state_list.append(state)
+                    word_content = []
+                    word_col_content = []
+                state = c_state
+
+            if state != "splitter":
+                word_content.append(char)
+                word_col_content.append(valid_col[c_i])
+
+        if len(word_content) != 0:
+            word_list.append(word_content)
+            word_col_list.append(word_col_content)
+            state_list.append(state)
+
+        return word_list, word_col_list, state_list
+
+    def decode(
+            self,
+            text_index,
+            text_prob=None,
+            is_remove_duplicate=False,
+            return_word_box=False,
+    ):
         """ convert text-index into text-label. """
         result_list = []
         ignored_tokens = self.get_ignored_tokens()
@@ -88,12 +180,22 @@ class CTCLabelDecode(BaseRecLabelDecode):
         super(CTCLabelDecode, self).__init__(character_dict_path,
                                              use_space_char)
 
-    def __call__(self, preds, label=None, *args, **kwargs):
+    def __call__(self, preds, label=None, return_word_box=False, *args, **kwargs):
         if isinstance(preds, torch.Tensor):
             preds = preds.numpy()
         preds_idx = preds.argmax(axis=2)
         preds_prob = preds.max(axis=2)
-        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
+        text = self.decode(
+            preds_idx,
+            preds_prob,
+            is_remove_duplicate=True,
+            return_word_box=return_word_box,
+        )
+        if return_word_box:
+            for rec_idx, rec in enumerate(text):
+                wh_ratio = kwargs["wh_ratio_list"][rec_idx]
+                max_wh_ratio = kwargs["max_wh_ratio"]
+                rec[2][0] = rec[2][0] * (wh_ratio / max_wh_ratio)
 
         if label is None:
             return text