Przeglądaj źródła

更新了magic_model

liukaiwen 1 rok temu
rodzic
commit
7da3b54538
1 zmienionych plików z 0 dodań i 418 usunięć
  1. 0 418
      magic_pdf/model/magic_model.py

+ 0 - 418
magic_pdf/model/magic_model.py

@@ -465,421 +465,3 @@ if __name__ == "__main__":
         magic_model = MagicModel(model_list, pdf_docs)
         for i in range(7):
             print(magic_model.get_imgs(i))
-
-
-    def __reduct_overlap(self, bboxes):
-        N = len(bboxes)
-        keep = [True] * N
-        for i in range(N):
-            for j in range(N):
-                if i == j:
-                    continue
-                if _is_in(bboxes[i], bboxes[j]):
-                    keep[i] = False
-
-        return [bboxes[i] for i in range(N) if keep[i]]
-
-    def __tie_up_category_by_distance(
-        self, page_no, subject_category_id, object_category_id
-    ):
-        """
-        假定每个 subject 最多有一个 object (可以有多个相邻的 object 合并为单个 object),每个 object 只能属于一个 subject
-        """
-        ret = []
-        MAX_DIS_OF_POINT = 10**9 + 7
-
-        subjects = self.__reduct_overlap(
-            list(
-                map(
-                    lambda x: x["bbox"],
-                    filter(
-                        lambda x: x["category_id"] == subject_category_id,
-                        self.__model_list[page_no]["layout_dets"],
-                    ),
-                )
-            )
-        )
-
-        objects = self.__reduct_overlap(
-            list(
-                map(
-                    lambda x: x["bbox"],
-                    filter(
-                        lambda x: x["category_id"] == object_category_id,
-                        self.__model_list[page_no]["layout_dets"],
-                    ),
-                )
-            )
-        )
-        subject_object_relation_map = {}
-
-        subjects.sort(key=lambda x: x[0] ** 2 + x[1] ** 2)  # get the distance !
-
-        all_bboxes = []
-
-        for v in subjects:
-            all_bboxes.append({"category_id": subject_category_id, "bbox": v})
-
-        for v in objects:
-            all_bboxes.append({"category_id": object_category_id, "bbox": v})
-
-        N = len(all_bboxes)
-        dis = [[MAX_DIS_OF_POINT] * N for _ in range(N)]
-
-        for i in range(N):
-            for j in range(i):
-                if (
-                    all_bboxes[i]["category_id"] == subject_category_id
-                    and all_bboxes[j]["category_id"] == subject_category_id
-                ):
-                    continue
-
-                dis[i][j] = bbox_distance(all_bboxes[i]["bbox"], all_bboxes[j]["bbox"])
-                dis[j][i] = dis[i][j]
-
-        used = set()
-        for i in range(N):
-            # 求第 i 个 subject 所关联的 object
-            if all_bboxes[i]["category_id"] != subject_category_id:
-                continue
-            seen = set()
-            candidates = []
-            arr = []
-            for j in range(N):
-
-                pos_flag_count = sum(
-                    list(
-                        map(
-                            lambda x: 1 if x else 0,
-                            bbox_relative_pos(
-                                all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
-                            ),
-                        )
-                    )
-                )
-                if pos_flag_count > 1:
-                    continue
-                if (
-                    all_bboxes[j]["category_id"] != object_category_id
-                    or j in used
-                    or dis[i][j] == MAX_DIS_OF_POINT
-                ):
-                    continue
-                arr.append((dis[i][j], j))
-
-            arr.sort(key=lambda x: x[0])
-            if len(arr) > 0:
-                candidates.append(arr[0][1])
-                seen.add(arr[0][1])
-
-            # 已经获取初始种子
-            for j in set(candidates):
-                tmp = []
-                for k in range(i + 1, N):
-                    pos_flag_count = sum(
-                        list(
-                            map(
-                                lambda x: 1 if x else 0,
-                                bbox_relative_pos(
-                                    all_bboxes[j]["bbox"], all_bboxes[k]["bbox"]
-                                ),
-                            )
-                        )
-                    )
-
-                    if pos_flag_count > 1:
-                        continue
-
-                    if (
-                        all_bboxes[k]["category_id"] != object_category_id
-                        or k in used
-                        or k in seen
-                        or dis[j][k] == MAX_DIS_OF_POINT
-                    ):
-                        continue
-                    is_nearest = True
-                    for l in range(i + 1, N):
-                        if l in (j, k) or l in used or l in seen:
-                            continue
-
-
-                        if not float_gt(dis[l][k], dis[j][k]):
-                            is_nearest = False
-                            break
-
-
-                    if is_nearest:
-                        tmp.append(k)
-                        seen.add(k)
-
-                candidates = tmp
-                if len(candidates) == 0:
-                    break
-
-            # 已经获取到某个 figure 下所有的最靠近的 captions,以及最靠近这些 captions 的 captions 。
-            # 先扩一下 bbox,
-            x0s = [all_bboxes[idx]["bbox"][0] for idx in seen] + [
-                all_bboxes[i]["bbox"][0]
-            ]
-            y0s = [all_bboxes[idx]["bbox"][1] for idx in seen] + [
-                all_bboxes[i]["bbox"][1]
-            ]
-            x1s = [all_bboxes[idx]["bbox"][2] for idx in seen] + [
-                all_bboxes[i]["bbox"][2]
-            ]
-            y1s = [all_bboxes[idx]["bbox"][3] for idx in seen] + [
-                all_bboxes[i]["bbox"][3]
-            ]
-
-            ox0, oy0, ox1, oy1 = min(x0s), min(y0s), max(x1s), max(y1s)
-            ix0, iy0, ix1, iy1 = all_bboxes[i]["bbox"]
-
-            # 分成了 4 个截取空间,需要计算落在每个截取空间下 objects 合并后占据的矩形面积
-            caption_poses = [
-                [ox0, oy0, ix0, oy1],
-                [ox0, oy0, ox1, iy0],
-                [ox0, iy1, ox1, oy1],
-                [ix1, oy0, ox1, oy1],
-            ]
-
-            caption_areas = []
-            for bbox in caption_poses:
-                embed_arr = []
-                for idx in seen:
-                    if _is_in(all_bboxes[idx]["bbox"], bbox):
-                        embed_arr.append(idx)
-
-                if len(embed_arr) > 0:
-                    embed_x0 = min([all_bboxes[idx]["bbox"][0] for idx in embed_arr])
-                    embed_y0 = min([all_bboxes[idx]["bbox"][1] for idx in embed_arr])
-                    embed_x1 = max([all_bboxes[idx]["bbox"][2] for idx in embed_arr])
-                    embed_y1 = max([all_bboxes[idx]["bbox"][3] for idx in embed_arr])
-                    caption_areas.append(
-                        int(abs(embed_x1 - embed_x0) * abs(embed_y1 - embed_y0))
-                    )
-                else:
-                    caption_areas.append(0)
-
-            subject_object_relation_map[i] = []
-            if max(caption_areas) > 0:
-                max_area_idx = caption_areas.index(max(caption_areas))
-                caption_bbox = caption_poses[max_area_idx]
-
-                for j in seen:
-                    if _is_in(all_bboxes[j]["bbox"], caption_bbox):
-                        used.add(j)
-                        subject_object_relation_map[i].append(j)
-
-        for i in sorted(subject_object_relation_map.keys()):
-            result = {
-                "subject_body": all_bboxes[i]["bbox"],
-                "all": all_bboxes[i]["bbox"],
-            }
-
-            if len(subject_object_relation_map[i]) > 0:
-                x0 = min(
-                    [all_bboxes[j]["bbox"][0] for j in subject_object_relation_map[i]]
-                )
-                y0 = min(
-                    [all_bboxes[j]["bbox"][1] for j in subject_object_relation_map[i]]
-                )
-                x1 = max(
-                    [all_bboxes[j]["bbox"][2] for j in subject_object_relation_map[i]]
-                )
-                y1 = max(
-                    [all_bboxes[j]["bbox"][3] for j in subject_object_relation_map[i]]
-                )
-                result["object_body"] = [x0, y0, x1, y1]
-                result["all"] = [
-                    min(x0, all_bboxes[i]["bbox"][0]),
-                    min(y0, all_bboxes[i]["bbox"][1]),
-                    max(x1, all_bboxes[i]["bbox"][2]),
-                    max(y1, all_bboxes[i]["bbox"][3]),
-                ]
-            ret.append(result)
-
-        total_subject_object_dis = 0
-        # 计算已经配对的 distance 距离
-        for i in subject_object_relation_map.keys():
-            for j in subject_object_relation_map[i]:
-                total_subject_object_dis += bbox_distance(
-                    all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
-                )
-
-        # 计算未匹配的 subject 和 object 的距离(非精确版)
-        with_caption_subject = set(
-            [
-                key
-                for key in subject_object_relation_map.keys()
-                if len(subject_object_relation_map[i]) > 0
-            ]
-        )
-        for i in range(N):
-            if all_bboxes[i]["category_id"] != object_category_id or i in used:
-                continue
-            candidates = []
-            for j in range(N):
-                if (
-                    all_bboxes[j]["category_id"] != subject_category_id
-                    or j in with_caption_subject
-                ):
-                    continue
-                candidates.append((dis[i][j], j))
-            if len(candidates) > 0:
-                candidates.sort(key=lambda x: x[0])
-                total_subject_object_dis += candidates[0][1]
-                with_caption_subject.add(j)
-        return ret, total_subject_object_dis
-
-    def get_imgs(self, page_no: int):  # @许瑞
-        records, _ = self.__tie_up_category_by_distance(page_no, 3, 4)
-        return [
-            {
-                "bbox": record["all"],
-                "img_body_bbox": record["subject_body"],
-                "img_caption_bbox": record.get("object_body", None),
-            }
-            for record in records
-        ]
-
-    def get_tables(
-        self, page_no: int
-    ) -> list:  # 3个坐标, caption, table主体,table-note
-        with_captions, _ = self.__tie_up_category_by_distance(page_no, 5, 6)
-        with_footnotes, _ = self.__tie_up_category_by_distance(page_no, 5, 7)
-        ret = []
-        N, M = len(with_captions), len(with_footnotes)
-        assert N == M
-        for i in range(N):
-            record = {
-                "table_caption_bbox": with_captions[i].get("object_body", None),
-                "table_body_bbox": with_captions[i]["subject_body"],
-                "table_footnote_bbox": with_footnotes[i].get("object_body", None),
-            }
-
-            x0 = min(with_captions[i]["all"][0], with_footnotes[i]["all"][0])
-            y0 = min(with_captions[i]["all"][1], with_footnotes[i]["all"][1])
-            x1 = max(with_captions[i]["all"][2], with_footnotes[i]["all"][2])
-            y1 = max(with_captions[i]["all"][3], with_footnotes[i]["all"][3])
-            record["bbox"] = [x0, y0, x1, y1]
-            ret.append(record)
-        return ret
-
-    def get_equations(self, page_no: int) -> list:  # 有坐标,也有字
-        inline_equations = self.__get_blocks_by_type(ModelBlockTypeEnum.EMBEDDING.value, page_no, ["latex"])
-        interline_equations = self.__get_blocks_by_type(ModelBlockTypeEnum.ISOLATED.value, page_no, ["latex"])
-        interline_equations_blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.ISOLATE_FORMULA.value, page_no)
-        return inline_equations, interline_equations, interline_equations_blocks
-
-    def get_discarded(self, page_no: int) -> list:  # 自研模型,只有坐标
-        blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.ABANDON.value, page_no)
-        return blocks
-
-    def get_text_blocks(self, page_no: int) -> list:  # 自研模型搞的,只有坐标,没有字
-        blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.PLAIN_TEXT.value, page_no)
-        return blocks
-
-    def get_title_blocks(self, page_no: int) -> list:  # 自研模型,只有坐标,没字
-        blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.TITLE.value, page_no)
-        return blocks
-
-    def get_ocr_text(self, page_no: int) -> list:  # paddle 搞的,有字也有坐标
-        text_spans = []
-        model_page_info = self.__model_list[page_no]
-        layout_dets = model_page_info["layout_dets"]
-        for layout_det in layout_dets:
-            if layout_det["category_id"] == "15":
-                span = {
-                    "bbox": layout_det['bbox'],
-                    "content": layout_det["text"],
-                }
-                text_spans.append(span)
-        return text_spans
-
-    def get_all_spans(self, page_no: int) -> list:
-        all_spans = []
-        model_page_info = self.__model_list[page_no]
-        layout_dets = model_page_info["layout_dets"]
-        allow_category_id_list = [3, 5, 13, 14, 15]
-        """当成span拼接的"""
-        #  3: 'image', # 图片
-        #  4: 'table',       # 表格
-        #  13: 'inline_equation',     # 行内公式
-        #  14: 'interline_equation',      # 行间公式
-        #  15: 'text',      # ocr识别文本
-        for layout_det in layout_dets:
-            category_id = layout_det["category_id"]
-            if category_id in allow_category_id_list:
-                span = {
-                    "bbox": layout_det['bbox']
-                }
-                if category_id == 3:
-                    span["type"] = ContentType.Image
-                elif category_id == 5:
-                    span["type"] = ContentType.Table
-                elif category_id == 13:
-                    span["content"] = layout_det["latex"]
-                    span["type"] = ContentType.InlineEquation
-                elif category_id == 14:
-                    span["content"] = layout_det["latex"]
-                    span["type"] = ContentType.InterlineEquation
-                elif category_id == 15:
-                    span["content"] = layout_det["text"]
-                    span["type"] = ContentType.Text
-                all_spans.append(span)
-        return all_spans
-
-    def get_page_size(self, page_no: int):  # 获取页面宽高
-        # 获取当前页的page对象
-        page = self.__docs[page_no]
-        # 获取当前页的宽高
-        page_w = page.rect.width
-        page_h = page.rect.height
-        return page_w, page_h
-
-    def __get_blocks_by_type(self, types: list, page_no: int, extra_col: list[str] = []) -> list:
-        blocks = []
-        for page_dict in self.__model_list:
-            layout_dets = page_dict.get("layout_dets", [])
-            page_info = page_dict.get("page_info", {})
-            page_number = page_info.get("page_no", -1)
-            if page_no != page_number:
-                continue
-            for item in layout_dets:
-                category_id = item.get("category_id", -1)
-                bbox = item.get("bbox", None)
-
-                if category_id in types:
-                    block = {
-                        "bbox": bbox
-                    }
-                    for col in extra_col:
-                        block[col] = item.get(col, None)
-                    blocks.append(block)
-        return blocks
-
-if __name__ == "__main__":
-    drw = DiskReaderWriter(r"D:/project/20231108code-clean")
-    if 0:
-        pdf_file_path = r"linshixuqiu\19983-00.pdf"
-        model_file_path = r"linshixuqiu\19983-00_new.json"
-        pdf_bytes = drw.read(pdf_file_path, AbsReaderWriter.MODE_BIN)
-        model_json_txt = drw.read(model_file_path, AbsReaderWriter.MODE_TXT)
-        model_list = json.loads(model_json_txt)
-        write_path = r"D:\project\20231108code-clean\linshixuqiu\19983-00"
-        img_bucket_path = "imgs"
-        img_writer = DiskReaderWriter(join_path(write_path, img_bucket_path))
-        pdf_docs = fitz.open("pdf", pdf_bytes)
-        magic_model = MagicModel(model_list, pdf_docs)
-
-    if 1:
-        model_list = json.loads(
-            drw.read("/opt/data/pdf/20240418/j.chroma.2009.03.042.json")
-        )
-        pdf_bytes = drw.read(
-            "/opt/data/pdf/20240418/j.chroma.2009.03.042.pdf", AbsReaderWriter.MODE_BIN
-        )
-        pdf_docs = fitz.open("pdf", pdf_bytes)
-        magic_model = MagicModel(model_list, pdf_docs)
-        for i in range(7):
-            print(magic_model.get_imgs(i))