|
|
@@ -1,5 +1,6 @@
|
|
|
-from mineru.utils.boxbase import bbox_relative_pos, calculate_iou, bbox_distance, is_in, get_minbox_if_overlap_by_ratio
|
|
|
+from mineru.utils.boxbase import bbox_relative_pos, get_minbox_if_overlap_by_ratio
|
|
|
from mineru.utils.enum_class import CategoryId, ContentType
|
|
|
+import mineru.utils.magic_model_utils as magic_model_utils
|
|
|
|
|
|
|
|
|
class MagicModel:
|
|
|
@@ -89,18 +90,9 @@ class MagicModel:
|
|
|
layout_dets.remove(need_remove)
|
|
|
|
|
|
def __fix_by_remove_low_confidence(self):
|
|
|
- need_remove_list = []
|
|
|
- layout_dets = self.__page_model_info['layout_dets']
|
|
|
- for layout_det in layout_dets:
|
|
|
- if layout_det['score'] <= 0.05:
|
|
|
- need_remove_list.append(layout_det)
|
|
|
- else:
|
|
|
- continue
|
|
|
- for need_remove in need_remove_list:
|
|
|
- layout_dets.remove(need_remove)
|
|
|
+ magic_model_utils.remove_low_confidence(self.__page_model_info['layout_dets'])
|
|
|
|
|
|
def __fix_by_remove_high_iou_and_low_confidence(self):
|
|
|
- need_remove_list = []
|
|
|
layout_dets = list(filter(
|
|
|
lambda x: x['category_id'] in [
|
|
|
CategoryId.Title,
|
|
|
@@ -115,20 +107,7 @@ class MagicModel:
|
|
|
], self.__page_model_info['layout_dets']
|
|
|
)
|
|
|
)
|
|
|
- for i in range(len(layout_dets)):
|
|
|
- for j in range(i + 1, len(layout_dets)):
|
|
|
- layout_det1 = layout_dets[i]
|
|
|
- layout_det2 = layout_dets[j]
|
|
|
-
|
|
|
- if calculate_iou(layout_det1['bbox'], layout_det2['bbox']) > 0.9:
|
|
|
-
|
|
|
- layout_det_need_remove = layout_det1 if layout_det1['score'] < layout_det2['score'] else layout_det2
|
|
|
-
|
|
|
- if layout_det_need_remove not in need_remove_list:
|
|
|
- need_remove_list.append(layout_det_need_remove)
|
|
|
-
|
|
|
- for need_remove in need_remove_list:
|
|
|
- self.__page_model_info['layout_dets'].remove(need_remove)
|
|
|
+ magic_model_utils.remove_high_iou_low_confidence(layout_dets)
|
|
|
|
|
|
def __fix_footnote(self):
|
|
|
footnotes = []
|
|
|
@@ -162,7 +141,7 @@ class MagicModel:
|
|
|
if pos_flag_count > 1:
|
|
|
continue
|
|
|
dis_figure_footnote[i] = min(
|
|
|
- self._bbox_distance(figures[j]['bbox'], footnotes[i]['bbox']),
|
|
|
+ magic_model_utils.bbox_distance_with_relative_check(figures[j]['bbox'], footnotes[i]['bbox']),
|
|
|
dis_figure_footnote.get(i, float('inf')),
|
|
|
)
|
|
|
for i in range(len(footnotes)):
|
|
|
@@ -181,7 +160,7 @@ class MagicModel:
|
|
|
continue
|
|
|
|
|
|
dis_table_footnote[i] = min(
|
|
|
- self._bbox_distance(tables[j]['bbox'], footnotes[i]['bbox']),
|
|
|
+ magic_model_utils.bbox_distance_with_relative_check(tables[j]['bbox'], footnotes[i]['bbox']),
|
|
|
dis_table_footnote.get(i, float('inf')),
|
|
|
)
|
|
|
for i in range(len(footnotes)):
|
|
|
@@ -190,189 +169,20 @@ class MagicModel:
|
|
|
if dis_table_footnote.get(i, float('inf')) > dis_figure_footnote[i]:
|
|
|
footnotes[i]['category_id'] = CategoryId.ImageFootnote
|
|
|
|
|
|
- def _bbox_distance(self, bbox1, bbox2):
|
|
|
- left, right, bottom, top = bbox_relative_pos(bbox1, bbox2)
|
|
|
- flags = [left, right, bottom, top]
|
|
|
- count = sum([1 if v else 0 for v in flags])
|
|
|
- if count > 1:
|
|
|
- return float('inf')
|
|
|
- if left or right:
|
|
|
- l1 = bbox1[3] - bbox1[1]
|
|
|
- l2 = bbox2[3] - bbox2[1]
|
|
|
- else:
|
|
|
- l1 = bbox1[2] - bbox1[0]
|
|
|
- l2 = bbox2[2] - bbox2[0]
|
|
|
-
|
|
|
- if l2 > l1 and (l2 - l1) / l1 > 0.3:
|
|
|
- return float('inf')
|
|
|
-
|
|
|
- return bbox_distance(bbox1, bbox2)
|
|
|
-
|
|
|
- def __reduct_overlap(self, bboxes):
|
|
|
- N = len(bboxes)
|
|
|
- keep = [True] * N
|
|
|
- for i in range(N):
|
|
|
- for j in range(N):
|
|
|
- if i == j:
|
|
|
- continue
|
|
|
- if is_in(bboxes[i]['bbox'], bboxes[j]['bbox']):
|
|
|
- keep[i] = False
|
|
|
- return [bboxes[i] for i in range(N) if keep[i]]
|
|
|
-
|
|
|
def __tie_up_category_by_distance_v3(
|
|
|
self,
|
|
|
subject_category_id: int,
|
|
|
object_category_id: int,
|
|
|
):
|
|
|
- subjects = self.__reduct_overlap(
|
|
|
- list(
|
|
|
- map(
|
|
|
- lambda x: {'bbox': x['bbox'], 'score': x['score']},
|
|
|
- filter(
|
|
|
- lambda x: x['category_id'] == subject_category_id,
|
|
|
- self.__page_model_info['layout_dets'],
|
|
|
- ),
|
|
|
- )
|
|
|
- )
|
|
|
- )
|
|
|
- objects = self.__reduct_overlap(
|
|
|
- list(
|
|
|
- map(
|
|
|
- lambda x: {'bbox': x['bbox'], 'score': x['score']},
|
|
|
- filter(
|
|
|
- lambda x: x['category_id'] == object_category_id,
|
|
|
- self.__page_model_info['layout_dets'],
|
|
|
- ),
|
|
|
- )
|
|
|
- )
|
|
|
+ return magic_model_utils.tie_up_category_by_distance_v3(
|
|
|
+ self.__page_model_info,
|
|
|
+ subject_category_id,
|
|
|
+ object_category_id,
|
|
|
+ extract_bbox_func=lambda x: x['bbox'],
|
|
|
+ extract_score_func=lambda x: x['score'],
|
|
|
+ create_item_func=lambda x: {'bbox': x['bbox'], 'score': x['score']}
|
|
|
)
|
|
|
|
|
|
- ret = []
|
|
|
- N, M = len(subjects), len(objects)
|
|
|
- subjects.sort(key=lambda x: x['bbox'][0] ** 2 + x['bbox'][1] ** 2)
|
|
|
- objects.sort(key=lambda x: x['bbox'][0] ** 2 + x['bbox'][1] ** 2)
|
|
|
-
|
|
|
- OBJ_IDX_OFFSET = 10000
|
|
|
- SUB_BIT_KIND, OBJ_BIT_KIND = 0, 1
|
|
|
-
|
|
|
- all_boxes_with_idx = [(i, SUB_BIT_KIND, sub['bbox'][0], sub['bbox'][1]) for i, sub in enumerate(subjects)] + [(i + OBJ_IDX_OFFSET , OBJ_BIT_KIND, obj['bbox'][0], obj['bbox'][1]) for i, obj in enumerate(objects)]
|
|
|
- seen_idx = set()
|
|
|
- seen_sub_idx = set()
|
|
|
-
|
|
|
- while N > len(seen_sub_idx):
|
|
|
- candidates = []
|
|
|
- for idx, kind, x0, y0 in all_boxes_with_idx:
|
|
|
- if idx in seen_idx:
|
|
|
- continue
|
|
|
- candidates.append((idx, kind, x0, y0))
|
|
|
-
|
|
|
- if len(candidates) == 0:
|
|
|
- break
|
|
|
- left_x = min([v[2] for v in candidates])
|
|
|
- top_y = min([v[3] for v in candidates])
|
|
|
-
|
|
|
- candidates.sort(key=lambda x: (x[2]-left_x) ** 2 + (x[3] - top_y) ** 2)
|
|
|
-
|
|
|
-
|
|
|
- fst_idx, fst_kind, left_x, top_y = candidates[0]
|
|
|
- fst_bbox = subjects[fst_idx]['bbox'] if fst_kind == SUB_BIT_KIND else objects[fst_idx - OBJ_IDX_OFFSET]['bbox']
|
|
|
- candidates.sort(key=lambda x: bbox_distance(fst_bbox, subjects[x[0]]['bbox']) if x[1] == SUB_BIT_KIND else bbox_distance(fst_bbox, objects[x[0] - OBJ_IDX_OFFSET]['bbox']))
|
|
|
- nxt = None
|
|
|
-
|
|
|
- for i in range(1, len(candidates)):
|
|
|
- if candidates[i][1] ^ fst_kind == 1:
|
|
|
- nxt = candidates[i]
|
|
|
- break
|
|
|
- if nxt is None:
|
|
|
- break
|
|
|
-
|
|
|
- if fst_kind == SUB_BIT_KIND:
|
|
|
- sub_idx, obj_idx = fst_idx, nxt[0] - OBJ_IDX_OFFSET
|
|
|
-
|
|
|
- else:
|
|
|
- sub_idx, obj_idx = nxt[0], fst_idx - OBJ_IDX_OFFSET
|
|
|
-
|
|
|
- pair_dis = bbox_distance(subjects[sub_idx]['bbox'], objects[obj_idx]['bbox'])
|
|
|
- nearest_dis = float('inf')
|
|
|
- for i in range(N):
|
|
|
- # 取消原先算法中 1对1 匹配的偏置
|
|
|
- # if i in seen_idx or i == sub_idx:continue
|
|
|
- nearest_dis = min(nearest_dis, bbox_distance(subjects[i]['bbox'], objects[obj_idx]['bbox']))
|
|
|
-
|
|
|
- if pair_dis >= 3*nearest_dis:
|
|
|
- seen_idx.add(sub_idx)
|
|
|
- continue
|
|
|
-
|
|
|
- seen_idx.add(sub_idx)
|
|
|
- seen_idx.add(obj_idx + OBJ_IDX_OFFSET)
|
|
|
- seen_sub_idx.add(sub_idx)
|
|
|
-
|
|
|
- ret.append(
|
|
|
- {
|
|
|
- 'sub_bbox': {
|
|
|
- 'bbox': subjects[sub_idx]['bbox'],
|
|
|
- 'score': subjects[sub_idx]['score'],
|
|
|
- },
|
|
|
- 'obj_bboxes': [
|
|
|
- {'score': objects[obj_idx]['score'], 'bbox': objects[obj_idx]['bbox']}
|
|
|
- ],
|
|
|
- 'sub_idx': sub_idx,
|
|
|
- }
|
|
|
- )
|
|
|
-
|
|
|
- for i in range(len(objects)):
|
|
|
- j = i + OBJ_IDX_OFFSET
|
|
|
- if j in seen_idx:
|
|
|
- continue
|
|
|
- seen_idx.add(j)
|
|
|
- nearest_dis, nearest_sub_idx = float('inf'), -1
|
|
|
- for k in range(len(subjects)):
|
|
|
- dis = bbox_distance(objects[i]['bbox'], subjects[k]['bbox'])
|
|
|
- if dis < nearest_dis:
|
|
|
- nearest_dis = dis
|
|
|
- nearest_sub_idx = k
|
|
|
-
|
|
|
- for k in range(len(subjects)):
|
|
|
- if k != nearest_sub_idx: continue
|
|
|
- if k in seen_sub_idx:
|
|
|
- for kk in range(len(ret)):
|
|
|
- if ret[kk]['sub_idx'] == k:
|
|
|
- ret[kk]['obj_bboxes'].append({'score': objects[i]['score'], 'bbox': objects[i]['bbox']})
|
|
|
- break
|
|
|
- else:
|
|
|
- ret.append(
|
|
|
- {
|
|
|
- 'sub_bbox': {
|
|
|
- 'bbox': subjects[k]['bbox'],
|
|
|
- 'score': subjects[k]['score'],
|
|
|
- },
|
|
|
- 'obj_bboxes': [
|
|
|
- {'score': objects[i]['score'], 'bbox': objects[i]['bbox']}
|
|
|
- ],
|
|
|
- 'sub_idx': k,
|
|
|
- }
|
|
|
- )
|
|
|
- seen_sub_idx.add(k)
|
|
|
- seen_idx.add(k)
|
|
|
-
|
|
|
-
|
|
|
- for i in range(len(subjects)):
|
|
|
- if i in seen_sub_idx:
|
|
|
- continue
|
|
|
- ret.append(
|
|
|
- {
|
|
|
- 'sub_bbox': {
|
|
|
- 'bbox': subjects[i]['bbox'],
|
|
|
- 'score': subjects[i]['score'],
|
|
|
- },
|
|
|
- 'obj_bboxes': [],
|
|
|
- 'sub_idx': i,
|
|
|
- }
|
|
|
- )
|
|
|
-
|
|
|
-
|
|
|
- return ret
|
|
|
-
|
|
|
def get_imgs(self):
|
|
|
with_captions = self.__tie_up_category_by_distance_v3(
|
|
|
CategoryId.ImageBody, CategoryId.ImageCaption
|