Prechádzať zdrojové kódy

feat: add utility functions for bounding box processing in magic_model_utils.py

myhloli 3 mesiacov pred
rodič
commit
9bf8be9861

+ 13 - 203
mineru/backend/pipeline/pipeline_magic_model.py

@@ -1,5 +1,6 @@
-from mineru.utils.boxbase import bbox_relative_pos, calculate_iou, bbox_distance, is_in, get_minbox_if_overlap_by_ratio
+from mineru.utils.boxbase import bbox_relative_pos, get_minbox_if_overlap_by_ratio
 from mineru.utils.enum_class import CategoryId, ContentType
+import mineru.utils.magic_model_utils as magic_model_utils
 
 
 class MagicModel:
@@ -89,18 +90,9 @@ class MagicModel:
             layout_dets.remove(need_remove)
 
     def __fix_by_remove_low_confidence(self):
-        need_remove_list = []
-        layout_dets = self.__page_model_info['layout_dets']
-        for layout_det in layout_dets:
-            if layout_det['score'] <= 0.05:
-                need_remove_list.append(layout_det)
-            else:
-                continue
-        for need_remove in need_remove_list:
-            layout_dets.remove(need_remove)
+        magic_model_utils.remove_low_confidence(self.__page_model_info['layout_dets'])
 
     def __fix_by_remove_high_iou_and_low_confidence(self):
-        need_remove_list = []
         layout_dets = list(filter(
             lambda x: x['category_id'] in [
                     CategoryId.Title,
@@ -115,20 +107,7 @@ class MagicModel:
                 ], self.__page_model_info['layout_dets']
             )
         )
-        for i in range(len(layout_dets)):
-            for j in range(i + 1, len(layout_dets)):
-                layout_det1 = layout_dets[i]
-                layout_det2 = layout_dets[j]
-
-                if calculate_iou(layout_det1['bbox'], layout_det2['bbox']) > 0.9:
-
-                    layout_det_need_remove = layout_det1 if layout_det1['score'] < layout_det2['score'] else layout_det2
-
-                    if layout_det_need_remove not in need_remove_list:
-                        need_remove_list.append(layout_det_need_remove)
-
-        for need_remove in need_remove_list:
-            self.__page_model_info['layout_dets'].remove(need_remove)
+        magic_model_utils.remove_high_iou_low_confidence(layout_dets)
 
     def __fix_footnote(self):
         footnotes = []
@@ -162,7 +141,7 @@ class MagicModel:
                 if pos_flag_count > 1:
                     continue
                 dis_figure_footnote[i] = min(
-                    self._bbox_distance(figures[j]['bbox'], footnotes[i]['bbox']),
+                    magic_model_utils.bbox_distance_with_relative_check(figures[j]['bbox'], footnotes[i]['bbox']),
                     dis_figure_footnote.get(i, float('inf')),
                 )
         for i in range(len(footnotes)):
@@ -181,7 +160,7 @@ class MagicModel:
                     continue
 
                 dis_table_footnote[i] = min(
-                    self._bbox_distance(tables[j]['bbox'], footnotes[i]['bbox']),
+                    magic_model_utils.bbox_distance_with_relative_check(tables[j]['bbox'], footnotes[i]['bbox']),
                     dis_table_footnote.get(i, float('inf')),
                 )
         for i in range(len(footnotes)):
@@ -190,189 +169,20 @@ class MagicModel:
             if dis_table_footnote.get(i, float('inf')) > dis_figure_footnote[i]:
                 footnotes[i]['category_id'] = CategoryId.ImageFootnote
 
-    def _bbox_distance(self, bbox1, bbox2):
-        left, right, bottom, top = bbox_relative_pos(bbox1, bbox2)
-        flags = [left, right, bottom, top]
-        count = sum([1 if v else 0 for v in flags])
-        if count > 1:
-            return float('inf')
-        if left or right:
-            l1 = bbox1[3] - bbox1[1]
-            l2 = bbox2[3] - bbox2[1]
-        else:
-            l1 = bbox1[2] - bbox1[0]
-            l2 = bbox2[2] - bbox2[0]
-
-        if l2 > l1 and (l2 - l1) / l1 > 0.3:
-            return float('inf')
-
-        return bbox_distance(bbox1, bbox2)
-
-    def __reduct_overlap(self, bboxes):
-        N = len(bboxes)
-        keep = [True] * N
-        for i in range(N):
-            for j in range(N):
-                if i == j:
-                    continue
-                if is_in(bboxes[i]['bbox'], bboxes[j]['bbox']):
-                    keep[i] = False
-        return [bboxes[i] for i in range(N) if keep[i]]
-
     def __tie_up_category_by_distance_v3(
         self,
         subject_category_id: int,
         object_category_id: int,
     ):
-        subjects = self.__reduct_overlap(
-            list(
-                map(
-                    lambda x: {'bbox': x['bbox'], 'score': x['score']},
-                    filter(
-                        lambda x: x['category_id'] == subject_category_id,
-                        self.__page_model_info['layout_dets'],
-                    ),
-                )
-            )
-        )
-        objects = self.__reduct_overlap(
-            list(
-                map(
-                    lambda x: {'bbox': x['bbox'], 'score': x['score']},
-                    filter(
-                        lambda x: x['category_id'] == object_category_id,
-                        self.__page_model_info['layout_dets'],
-                    ),
-                )
-            )
+        return magic_model_utils.tie_up_category_by_distance_v3(
+            self.__page_model_info,
+            subject_category_id,
+            object_category_id,
+            extract_bbox_func=lambda x: x['bbox'],
+            extract_score_func=lambda x: x['score'],
+            create_item_func=lambda x: {'bbox': x['bbox'], 'score': x['score']}
         )
 
-        ret = []
-        N, M = len(subjects), len(objects)
-        subjects.sort(key=lambda x: x['bbox'][0] ** 2 + x['bbox'][1] ** 2)
-        objects.sort(key=lambda x: x['bbox'][0] ** 2 + x['bbox'][1] ** 2)
-
-        OBJ_IDX_OFFSET = 10000
-        SUB_BIT_KIND, OBJ_BIT_KIND = 0, 1
-
-        all_boxes_with_idx = [(i, SUB_BIT_KIND, sub['bbox'][0], sub['bbox'][1]) for i, sub in enumerate(subjects)] + [(i + OBJ_IDX_OFFSET , OBJ_BIT_KIND, obj['bbox'][0], obj['bbox'][1]) for i, obj in enumerate(objects)]
-        seen_idx = set()
-        seen_sub_idx = set()
-
-        while N > len(seen_sub_idx):
-            candidates = []
-            for idx, kind, x0, y0 in all_boxes_with_idx:
-                if idx in seen_idx:
-                    continue
-                candidates.append((idx, kind, x0, y0))
-
-            if len(candidates) == 0:
-                break
-            left_x = min([v[2] for v in candidates])
-            top_y =  min([v[3] for v in candidates])
-
-            candidates.sort(key=lambda x: (x[2]-left_x) ** 2 + (x[3] - top_y) ** 2)
-
-
-            fst_idx, fst_kind, left_x, top_y = candidates[0]
-            fst_bbox = subjects[fst_idx]['bbox'] if fst_kind == SUB_BIT_KIND else objects[fst_idx - OBJ_IDX_OFFSET]['bbox']
-            candidates.sort(key=lambda x: bbox_distance(fst_bbox, subjects[x[0]]['bbox']) if x[1] == SUB_BIT_KIND else bbox_distance(fst_bbox, objects[x[0] - OBJ_IDX_OFFSET]['bbox']))
-            nxt = None
-
-            for i in range(1, len(candidates)):
-                if candidates[i][1] ^ fst_kind == 1:
-                    nxt = candidates[i]
-                    break
-            if nxt is None:
-                break
-
-            if fst_kind == SUB_BIT_KIND:
-                sub_idx, obj_idx = fst_idx, nxt[0] - OBJ_IDX_OFFSET
-
-            else:
-                sub_idx, obj_idx = nxt[0], fst_idx - OBJ_IDX_OFFSET
-
-            pair_dis = bbox_distance(subjects[sub_idx]['bbox'], objects[obj_idx]['bbox'])
-            nearest_dis = float('inf')
-            for i in range(N):
-                # 取消原先算法中 1对1 匹配的偏置
-                # if i in seen_idx or i == sub_idx:continue
-                nearest_dis = min(nearest_dis, bbox_distance(subjects[i]['bbox'], objects[obj_idx]['bbox']))
-
-            if pair_dis >= 3*nearest_dis:
-                seen_idx.add(sub_idx)
-                continue
-
-            seen_idx.add(sub_idx)
-            seen_idx.add(obj_idx + OBJ_IDX_OFFSET)
-            seen_sub_idx.add(sub_idx)
-
-            ret.append(
-                {
-                    'sub_bbox': {
-                        'bbox': subjects[sub_idx]['bbox'],
-                        'score': subjects[sub_idx]['score'],
-                    },
-                    'obj_bboxes': [
-                        {'score': objects[obj_idx]['score'], 'bbox': objects[obj_idx]['bbox']}
-                    ],
-                    'sub_idx': sub_idx,
-                }
-            )
-
-        for i in range(len(objects)):
-            j = i + OBJ_IDX_OFFSET
-            if j in seen_idx:
-                continue
-            seen_idx.add(j)
-            nearest_dis, nearest_sub_idx = float('inf'), -1
-            for k in range(len(subjects)):
-                dis = bbox_distance(objects[i]['bbox'], subjects[k]['bbox'])
-                if dis < nearest_dis:
-                    nearest_dis = dis
-                    nearest_sub_idx = k
-
-            for k in range(len(subjects)):
-                if k != nearest_sub_idx: continue
-                if k in seen_sub_idx:
-                    for kk in range(len(ret)):
-                        if ret[kk]['sub_idx'] == k:
-                            ret[kk]['obj_bboxes'].append({'score': objects[i]['score'], 'bbox': objects[i]['bbox']})
-                            break
-                else:
-                    ret.append(
-                        {
-                            'sub_bbox': {
-                                'bbox': subjects[k]['bbox'],
-                                'score': subjects[k]['score'],
-                            },
-                            'obj_bboxes': [
-                                {'score': objects[i]['score'], 'bbox': objects[i]['bbox']}
-                            ],
-                            'sub_idx': k,
-                        }
-                    )
-                seen_sub_idx.add(k)
-                seen_idx.add(k)
-
-
-        for i in range(len(subjects)):
-            if i in seen_sub_idx:
-                continue
-            ret.append(
-                {
-                    'sub_bbox': {
-                        'bbox': subjects[i]['bbox'],
-                        'score': subjects[i]['score'],
-                    },
-                    'obj_bboxes': [],
-                    'sub_idx': i,
-                }
-            )
-
-
-        return ret
-
     def get_imgs(self):
         with_captions = self.__tie_up_category_by_distance_v3(
             CategoryId.ImageBody, CategoryId.ImageCaption

+ 8 - 169
mineru/backend/vlm/vlm_magic_model.py

@@ -3,11 +3,10 @@ from typing import Literal
 
 from loguru import logger
 
-from mineru.utils.boxbase import bbox_distance, is_in
 from mineru.utils.enum_class import ContentType, BlockType, SplitFlag
 from mineru.backend.vlm.vlm_middle_json_mkcontent import merge_para_with_text
 from mineru.utils.format_utils import convert_otsl_to_html
-
+import mineru.utils.magic_model_utils as magic_model_utils
 
 class MagicModel:
     def __init__(self, token: str, width, height):
@@ -251,179 +250,19 @@ def latex_fix(latex):
     return latex
 
 
-def __reduct_overlap(bboxes):
-    N = len(bboxes)
-    keep = [True] * N
-    for i in range(N):
-        for j in range(N):
-            if i == j:
-                continue
-            if is_in(bboxes[i]["bbox"], bboxes[j]["bbox"]):
-                keep[i] = False
-    return [bboxes[i] for i in range(N) if keep[i]]
-
-
 def __tie_up_category_by_distance_v3(
     blocks: list,
     subject_block_type: str,
     object_block_type: str,
 ):
-    subjects = __reduct_overlap(
-        list(
-            map(
-                lambda x: {"bbox": x["bbox"], "lines": x["lines"], "index": x["index"]},
-                filter(
-                    lambda x: x["type"] == subject_block_type,
-                    blocks,
-                ),
-            )
-        )
+    return magic_model_utils.tie_up_category_by_distance_v3(
+        blocks,
+        lambda x: x["type"] == subject_block_type,
+        lambda x: x["type"] == object_block_type,
+        extract_bbox_func=lambda x: x["bbox"],
+        extract_score_func=lambda x: x.get("score", 1.0),
+        create_item_func=lambda x: {"bbox": x["bbox"], "lines": x["lines"], "index": x["index"]}
     )
-    objects = __reduct_overlap(
-        list(
-            map(
-                lambda x: {"bbox": x["bbox"], "lines": x["lines"], "index": x["index"]},
-                filter(
-                    lambda x: x["type"] == object_block_type,
-                    blocks,
-                ),
-            )
-        )
-    )
-
-    ret = []
-    N, M = len(subjects), len(objects)
-    subjects.sort(key=lambda x: x["bbox"][0] ** 2 + x["bbox"][1] ** 2)
-    objects.sort(key=lambda x: x["bbox"][0] ** 2 + x["bbox"][1] ** 2)
-
-    OBJ_IDX_OFFSET = 10000
-    SUB_BIT_KIND, OBJ_BIT_KIND = 0, 1
-
-    all_boxes_with_idx = [(i, SUB_BIT_KIND, sub["bbox"][0], sub["bbox"][1]) for i, sub in enumerate(subjects)] + [
-        (i + OBJ_IDX_OFFSET, OBJ_BIT_KIND, obj["bbox"][0], obj["bbox"][1]) for i, obj in enumerate(objects)
-    ]
-    seen_idx = set()
-    seen_sub_idx = set()
-
-    while N > len(seen_sub_idx):
-        candidates = []
-        for idx, kind, x0, y0 in all_boxes_with_idx:
-            if idx in seen_idx:
-                continue
-            candidates.append((idx, kind, x0, y0))
-
-        if len(candidates) == 0:
-            break
-        left_x = min([v[2] for v in candidates])
-        top_y = min([v[3] for v in candidates])
-
-        candidates.sort(key=lambda x: (x[2] - left_x) ** 2 + (x[3] - top_y) ** 2)
-
-        fst_idx, fst_kind, left_x, top_y = candidates[0]
-        fst_bbox = subjects[fst_idx]['bbox'] if fst_kind == SUB_BIT_KIND else objects[fst_idx - OBJ_IDX_OFFSET]['bbox']
-        candidates.sort(
-            key=lambda x: bbox_distance(fst_bbox, subjects[x[0]]['bbox']) if x[1] == SUB_BIT_KIND else bbox_distance(
-                fst_bbox, objects[x[0] - OBJ_IDX_OFFSET]['bbox']))
-        nxt = None
-
-        for i in range(1, len(candidates)):
-            if candidates[i][1] ^ fst_kind == 1:
-                nxt = candidates[i]
-                break
-        if nxt is None:
-            break
-
-        if fst_kind == SUB_BIT_KIND:
-            sub_idx, obj_idx = fst_idx, nxt[0] - OBJ_IDX_OFFSET
-
-        else:
-            sub_idx, obj_idx = nxt[0], fst_idx - OBJ_IDX_OFFSET
-
-        pair_dis = bbox_distance(subjects[sub_idx]["bbox"], objects[obj_idx]["bbox"])
-        nearest_dis = float("inf")
-        for i in range(N):
-            # 取消原先算法中 1对1 匹配的偏置
-            # if i in seen_idx or i == sub_idx:
-            #     continue
-            nearest_dis = min(nearest_dis, bbox_distance(subjects[i]["bbox"], objects[obj_idx]["bbox"]))
-
-        if pair_dis >= 3 * nearest_dis:
-            seen_idx.add(sub_idx)
-            continue
-
-        seen_idx.add(sub_idx)
-        seen_idx.add(obj_idx + OBJ_IDX_OFFSET)
-        seen_sub_idx.add(sub_idx)
-
-        ret.append(
-            {
-                "sub_bbox": {
-                    "bbox": subjects[sub_idx]["bbox"],
-                    "lines": subjects[sub_idx]["lines"],
-                    "index": subjects[sub_idx]["index"],
-                },
-                "obj_bboxes": [
-                    {"bbox": objects[obj_idx]["bbox"], "lines": objects[obj_idx]["lines"], "index": objects[obj_idx]["index"]}
-                ],
-                "sub_idx": sub_idx,
-            }
-        )
-
-    for i in range(len(objects)):
-        j = i + OBJ_IDX_OFFSET
-        if j in seen_idx:
-            continue
-        seen_idx.add(j)
-        nearest_dis, nearest_sub_idx = float("inf"), -1
-        for k in range(len(subjects)):
-            dis = bbox_distance(objects[i]["bbox"], subjects[k]["bbox"])
-            if dis < nearest_dis:
-                nearest_dis = dis
-                nearest_sub_idx = k
-
-        for k in range(len(subjects)):
-            if k != nearest_sub_idx:
-                continue
-            if k in seen_sub_idx:
-                for kk in range(len(ret)):
-                    if ret[kk]["sub_idx"] == k:
-                        ret[kk]["obj_bboxes"].append(
-                            {"bbox": objects[i]["bbox"], "lines": objects[i]["lines"], "index": objects[i]["index"]}
-                        )
-                        break
-            else:
-                ret.append(
-                    {
-                        "sub_bbox": {
-                            "bbox": subjects[k]["bbox"],
-                            "lines": subjects[k]["lines"],
-                            "index": subjects[k]["index"],
-                        },
-                        "obj_bboxes": [
-                            {"bbox": objects[i]["bbox"], "lines": objects[i]["lines"], "index": objects[i]["index"]}
-                        ],
-                        "sub_idx": k,
-                    }
-                )
-            seen_sub_idx.add(k)
-            seen_idx.add(k)
-
-    for i in range(len(subjects)):
-        if i in seen_sub_idx:
-            continue
-        ret.append(
-            {
-                "sub_bbox": {
-                    "bbox": subjects[i]["bbox"],
-                    "lines": subjects[i]["lines"],
-                    "index": subjects[i]["index"],
-                },
-                "obj_bboxes": [],
-                "sub_idx": i,
-            }
-        )
-
-    return ret
 
 
 def get_type_blocks(blocks, block_type: Literal["image", "table"]):

+ 261 - 0
mineru/utils/magic_model_utils.py

@@ -0,0 +1,261 @@
+"""
+布局处理的公共工具类
+包含两个MagicModel类中重复使用的方法和逻辑
+"""
+from typing import List, Dict, Any, Union
+from mineru.utils.boxbase import bbox_relative_pos, calculate_iou, bbox_distance, is_in
+
+
+def reduct_overlap(bboxes: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
+    """
+    去除重叠的bbox,保留不被其他bbox包含的bbox
+
+    Args:
+        bboxes: 包含bbox信息的字典列表
+
+    Returns:
+        去重后的bbox列表
+    """
+    N = len(bboxes)
+    keep = [True] * N
+    for i in range(N):
+        for j in range(N):
+            if i == j:
+                continue
+            if is_in(bboxes[i]['bbox'], bboxes[j]['bbox']):
+                keep[i] = False
+    return [bboxes[i] for i in range(N) if keep[i]]
+
+
+def bbox_distance_with_relative_check(bbox1: List[int], bbox2: List[int]) -> float:
+    """
+    计算两个bbox之间的距离,考虑相对位置约束
+
+    Args:
+        bbox1: 第一个bbox [x1, y1, x2, y2]
+        bbox2: 第二个bbox [x1, y1, x2, y2]
+
+    Returns:
+        距离值,如果不满足条件返回无穷大
+    """
+    left, right, bottom, top = bbox_relative_pos(bbox1, bbox2)
+    flags = [left, right, bottom, top]
+    count = sum([1 if v else 0 for v in flags])
+    if count > 1:
+        return float('inf')
+    if left or right:
+        l1 = bbox1[3] - bbox1[1]
+        l2 = bbox2[3] - bbox2[1]
+    else:
+        l1 = bbox1[2] - bbox1[0]
+        l2 = bbox2[2] - bbox2[0]
+
+    if l2 > l1 and (l2 - l1) / l1 > 0.3:
+        return float('inf')
+
+    return bbox_distance(bbox1, bbox2)
+
+
+def tie_up_category_by_distance_v3(
+    data_source: Union[List[Dict], Dict],
+    subject_category_filter,
+    object_category_filter,
+    extract_bbox_func=None,
+    extract_score_func=None,
+    create_item_func=None
+) -> List[Dict[str, Any]]:
+    """
+    基于距离关联不同类型的区块/元素
+
+    Args:
+        data_source: 数据源,可以是列表或包含layout_dets的字典
+        subject_category_filter: 主体类别过滤函数或值
+        object_category_filter: 对象类别过滤函数或值
+        extract_bbox_func: 提取bbox的函数,默认使用'bbox'键
+        extract_score_func: 提取score的函数,默认使用'score'键
+        create_item_func: 创建返回项的函数
+
+    Returns:
+        关联结果列表
+    """
+    # 默认函数
+    if extract_bbox_func is None:
+        extract_bbox_func = lambda x: x['bbox']
+    if extract_score_func is None:
+        extract_score_func = lambda x: x['score']
+    if create_item_func is None:
+        create_item_func = lambda x: {'bbox': extract_bbox_func(x), 'score': extract_score_func(x)}
+
+    # 处理数据源
+    if isinstance(data_source, dict) and 'layout_dets' in data_source:
+        items = data_source['layout_dets']
+    else:
+        items = data_source
+
+    # 过滤主体和对象
+    if callable(subject_category_filter):
+        subjects = list(filter(subject_category_filter, items))
+    else:
+        subjects = list(filter(lambda x: x.get('category_id') == subject_category_filter or x.get('type') == subject_category_filter, items))
+
+    if callable(object_category_filter):
+        objects = list(filter(object_category_filter, items))
+    else:
+        objects = list(filter(lambda x: x.get('category_id') == object_category_filter or x.get('type') == object_category_filter, items))
+
+    # 转换为标准格式并去重
+    subjects = reduct_overlap([create_item_func(x) for x in subjects])
+    objects = reduct_overlap([create_item_func(x) for x in objects])
+
+    ret = []
+    N, M = len(subjects), len(objects)
+    subjects.sort(key=lambda x: extract_bbox_func(x)[0] ** 2 + extract_bbox_func(x)[1] ** 2)
+    objects.sort(key=lambda x: extract_bbox_func(x)[0] ** 2 + extract_bbox_func(x)[1] ** 2)
+
+    OBJ_IDX_OFFSET = 10000
+    SUB_BIT_KIND, OBJ_BIT_KIND = 0, 1
+
+    all_boxes_with_idx = [(i, SUB_BIT_KIND, extract_bbox_func(sub)[0], extract_bbox_func(sub)[1]) for i, sub in enumerate(subjects)] + \
+                        [(i + OBJ_IDX_OFFSET, OBJ_BIT_KIND, extract_bbox_func(obj)[0], extract_bbox_func(obj)[1]) for i, obj in enumerate(objects)]
+    seen_idx = set()
+    seen_sub_idx = set()
+
+    while N > len(seen_sub_idx):
+        candidates = []
+        for idx, kind, x0, y0 in all_boxes_with_idx:
+            if idx in seen_idx:
+                continue
+            candidates.append((idx, kind, x0, y0))
+
+        if len(candidates) == 0:
+            break
+        left_x = min([v[2] for v in candidates])
+        top_y = min([v[3] for v in candidates])
+
+        candidates.sort(key=lambda x: (x[2] - left_x) ** 2 + (x[3] - top_y) ** 2)
+
+        fst_idx, fst_kind, left_x, top_y = candidates[0]
+        fst_bbox = extract_bbox_func(subjects[fst_idx]) if fst_kind == SUB_BIT_KIND else extract_bbox_func(objects[fst_idx - OBJ_IDX_OFFSET])
+        candidates.sort(
+            key=lambda x: bbox_distance(fst_bbox, extract_bbox_func(subjects[x[0]])) if x[1] == SUB_BIT_KIND else bbox_distance(
+                fst_bbox, extract_bbox_func(objects[x[0] - OBJ_IDX_OFFSET])))
+        nxt = None
+
+        for i in range(1, len(candidates)):
+            if candidates[i][1] ^ fst_kind == 1:
+                nxt = candidates[i]
+                break
+        if nxt is None:
+            break
+
+        if fst_kind == SUB_BIT_KIND:
+            sub_idx, obj_idx = fst_idx, nxt[0] - OBJ_IDX_OFFSET
+        else:
+            sub_idx, obj_idx = nxt[0], fst_idx - OBJ_IDX_OFFSET
+
+        pair_dis = bbox_distance(extract_bbox_func(subjects[sub_idx]), extract_bbox_func(objects[obj_idx]))
+        nearest_dis = float('inf')
+        for i in range(N):
+            # 取消原先算法中 1对1 匹配的偏置
+            # if i in seen_idx or i == sub_idx:continue
+            nearest_dis = min(nearest_dis, bbox_distance(extract_bbox_func(subjects[i]), extract_bbox_func(objects[obj_idx])))
+
+        if pair_dis >= 3 * nearest_dis:
+            seen_idx.add(sub_idx)
+            continue
+
+        seen_idx.add(sub_idx)
+        seen_idx.add(obj_idx + OBJ_IDX_OFFSET)
+        seen_sub_idx.add(sub_idx)
+
+        ret.append({
+            'sub_bbox': subjects[sub_idx],
+            'obj_bboxes': [objects[obj_idx]],
+            'sub_idx': sub_idx,
+        })
+
+    # 处理剩余的对象
+    for i in range(len(objects)):
+        j = i + OBJ_IDX_OFFSET
+        if j in seen_idx:
+            continue
+        seen_idx.add(j)
+        nearest_dis, nearest_sub_idx = float('inf'), -1
+        for k in range(len(subjects)):
+            dis = bbox_distance(extract_bbox_func(objects[i]), extract_bbox_func(subjects[k]))
+            if dis < nearest_dis:
+                nearest_dis = dis
+                nearest_sub_idx = k
+
+        for k in range(len(subjects)):
+            if k != nearest_sub_idx:
+                continue
+            if k in seen_sub_idx:
+                for kk in range(len(ret)):
+                    if ret[kk]['sub_idx'] == k:
+                        ret[kk]['obj_bboxes'].append(objects[i])
+                        break
+            else:
+                ret.append({
+                    'sub_bbox': subjects[k],
+                    'obj_bboxes': [objects[i]],
+                    'sub_idx': k,
+                })
+            seen_sub_idx.add(k)
+            seen_idx.add(k)
+
+    # 处理剩余的主体
+    for i in range(len(subjects)):
+        if i in seen_sub_idx:
+            continue
+        ret.append({
+            'sub_bbox': subjects[i],
+            'obj_bboxes': [],
+            'sub_idx': i,
+        })
+
+    return ret
+
+
+def remove_high_iou_low_confidence(layout_dets: List[Dict], iou_threshold: float = 0.9):
+    """
+    删除高IOU且置信度较低的检测结果
+
+    Args:
+        layout_dets: 布局检测结果列表
+        iou_threshold: IOU阈值
+    """
+    need_remove_list = []
+
+    for i in range(len(layout_dets)):
+        for j in range(i + 1, len(layout_dets)):
+            layout_det1 = layout_dets[i]
+            layout_det2 = layout_dets[j]
+
+            if calculate_iou(layout_det1['bbox'], layout_det2['bbox']) > iou_threshold:
+                layout_det_need_remove = layout_det1 if layout_det1['score'] < layout_det2['score'] else layout_det2
+                if layout_det_need_remove not in need_remove_list:
+                    need_remove_list.append(layout_det_need_remove)
+
+    for need_remove in need_remove_list:
+        if need_remove in layout_dets:
+            layout_dets.remove(need_remove)
+
+
+def remove_low_confidence(layout_dets: List[Dict], confidence_threshold: float = 0.05):
+    """
+    删除置信度特别低的检测结果
+
+    Args:
+        layout_dets: 布局检测结果列表
+        confidence_threshold: 置信度阈值
+    """
+    need_remove_list = []
+    for layout_det in layout_dets:
+        if layout_det['score'] <= confidence_threshold:
+            need_remove_list.append(layout_det)
+
+    for need_remove in need_remove_list:
+        if need_remove in layout_dets:
+            layout_dets.remove(need_remove)
+