Sfoglia il codice sorgente

refactor: remove unused method in MagicModel class

icecraft 10 mesi fa
parent
commit
d13f3c6d14

+ 4 - 435
magic_pdf/model/magic_model.py

@@ -3,12 +3,9 @@ import enum
 from magic_pdf.config.model_block_type import ModelBlockTypeEnum
 from magic_pdf.config.ocr_content_type import CategoryId, ContentType
 from magic_pdf.data.dataset import Dataset
-from magic_pdf.libs.boxbase import (_is_in, _is_part_overlap, bbox_distance,
-                                    bbox_relative_pos, box_area, calculate_iou,
-                                    calculate_overlap_area_in_bbox1_area_ratio,
-                                    get_overlap_area)
+from magic_pdf.libs.boxbase import (_is_in, bbox_distance, bbox_relative_pos,
+                                    calculate_iou)
 from magic_pdf.libs.coordinate_transform import get_scale_ratio
-from magic_pdf.libs.local_math import float_gt
 from magic_pdf.pre_proc.remove_bbox_overlap import _remove_overlap_between_bbox
 
 CAPATION_OVERLAP_AREA_RATIO = 0.6
@@ -208,393 +205,6 @@ class MagicModel:
                     keep[i] = False
         return [bboxes[i] for i in range(N) if keep[i]]
 
-    def __tie_up_category_by_distance(
-        self, page_no, subject_category_id, object_category_id
-    ):
-        """假定每个 subject 最多有一个 object (可以有多个相邻的 object 合并为单个 object),每个 object
-        只能属于一个 subject."""
-        ret = []
-        MAX_DIS_OF_POINT = 10**9 + 7
-        """
-        subject 和 object 的 bbox 会合并成一个大的 bbox (named: merged bbox)。
-        筛选出所有和 merged bbox 有 overlap 且 overlap 面积大于 object 的面积的 subjects。
-        再求出筛选出的 subjects 和 object 的最短距离
-        """
-
-        def search_overlap_between_boxes(subject_idx, object_idx):
-            idxes = [subject_idx, object_idx]
-            x0s = [all_bboxes[idx]['bbox'][0] for idx in idxes]
-            y0s = [all_bboxes[idx]['bbox'][1] for idx in idxes]
-            x1s = [all_bboxes[idx]['bbox'][2] for idx in idxes]
-            y1s = [all_bboxes[idx]['bbox'][3] for idx in idxes]
-
-            merged_bbox = [
-                min(x0s),
-                min(y0s),
-                max(x1s),
-                max(y1s),
-            ]
-            ratio = 0
-
-            other_objects = list(
-                map(
-                    lambda x: {'bbox': x['bbox'], 'score': x['score']},
-                    filter(
-                        lambda x: x['category_id']
-                        not in (object_category_id, subject_category_id),
-                        self.__model_list[page_no]['layout_dets'],
-                    ),
-                )
-            )
-            for other_object in other_objects:
-                ratio = max(
-                    ratio,
-                    get_overlap_area(merged_bbox, other_object['bbox'])
-                    * 1.0
-                    / box_area(all_bboxes[object_idx]['bbox']),
-                )
-                if ratio >= MERGE_BOX_OVERLAP_AREA_RATIO:
-                    break
-
-            return ratio
-
-        def may_find_other_nearest_bbox(subject_idx, object_idx):
-            ret = float('inf')
-
-            x0 = min(
-                all_bboxes[subject_idx]['bbox'][0], all_bboxes[object_idx]['bbox'][0]
-            )
-            y0 = min(
-                all_bboxes[subject_idx]['bbox'][1], all_bboxes[object_idx]['bbox'][1]
-            )
-            x1 = max(
-                all_bboxes[subject_idx]['bbox'][2], all_bboxes[object_idx]['bbox'][2]
-            )
-            y1 = max(
-                all_bboxes[subject_idx]['bbox'][3], all_bboxes[object_idx]['bbox'][3]
-            )
-
-            object_area = abs(
-                all_bboxes[object_idx]['bbox'][2] - all_bboxes[object_idx]['bbox'][0]
-            ) * abs(
-                all_bboxes[object_idx]['bbox'][3] - all_bboxes[object_idx]['bbox'][1]
-            )
-
-            for i in range(len(all_bboxes)):
-                if (
-                    i == subject_idx
-                    or all_bboxes[i]['category_id'] != subject_category_id
-                ):
-                    continue
-                if _is_part_overlap([x0, y0, x1, y1], all_bboxes[i]['bbox']) or _is_in(
-                    all_bboxes[i]['bbox'], [x0, y0, x1, y1]
-                ):
-
-                    i_area = abs(
-                        all_bboxes[i]['bbox'][2] - all_bboxes[i]['bbox'][0]
-                    ) * abs(all_bboxes[i]['bbox'][3] - all_bboxes[i]['bbox'][1])
-                    if i_area >= object_area:
-                        ret = min(float('inf'), dis[i][object_idx])
-
-            return ret
-
-        def expand_bbbox(idxes):
-            x0s = [all_bboxes[idx]['bbox'][0] for idx in idxes]
-            y0s = [all_bboxes[idx]['bbox'][1] for idx in idxes]
-            x1s = [all_bboxes[idx]['bbox'][2] for idx in idxes]
-            y1s = [all_bboxes[idx]['bbox'][3] for idx in idxes]
-            return min(x0s), min(y0s), max(x1s), max(y1s)
-
-        subjects = self.__reduct_overlap(
-            list(
-                map(
-                    lambda x: {'bbox': x['bbox'], 'score': x['score']},
-                    filter(
-                        lambda x: x['category_id'] == subject_category_id,
-                        self.__model_list[page_no]['layout_dets'],
-                    ),
-                )
-            )
-        )
-
-        objects = self.__reduct_overlap(
-            list(
-                map(
-                    lambda x: {'bbox': x['bbox'], 'score': x['score']},
-                    filter(
-                        lambda x: x['category_id'] == object_category_id,
-                        self.__model_list[page_no]['layout_dets'],
-                    ),
-                )
-            )
-        )
-        subject_object_relation_map = {}
-
-        subjects.sort(
-            key=lambda x: x['bbox'][0] ** 2 + x['bbox'][1] ** 2
-        )  # get the distance !
-
-        all_bboxes = []
-
-        for v in subjects:
-            all_bboxes.append(
-                {
-                    'category_id': subject_category_id,
-                    'bbox': v['bbox'],
-                    'score': v['score'],
-                }
-            )
-
-        for v in objects:
-            all_bboxes.append(
-                {
-                    'category_id': object_category_id,
-                    'bbox': v['bbox'],
-                    'score': v['score'],
-                }
-            )
-
-        N = len(all_bboxes)
-        dis = [[MAX_DIS_OF_POINT] * N for _ in range(N)]
-
-        for i in range(N):
-            for j in range(i):
-                if (
-                    all_bboxes[i]['category_id'] == subject_category_id
-                    and all_bboxes[j]['category_id'] == subject_category_id
-                ):
-                    continue
-
-                subject_idx, object_idx = i, j
-                if all_bboxes[j]['category_id'] == subject_category_id:
-                    subject_idx, object_idx = j, i
-
-                if (
-                    search_overlap_between_boxes(subject_idx, object_idx)
-                    >= MERGE_BOX_OVERLAP_AREA_RATIO
-                ):
-                    dis[i][j] = float('inf')
-                    dis[j][i] = dis[i][j]
-                    continue
-
-                dis[i][j] = self._bbox_distance(
-                    all_bboxes[subject_idx]['bbox'], all_bboxes[object_idx]['bbox']
-                )
-                dis[j][i] = dis[i][j]
-
-        used = set()
-        for i in range(N):
-            # 求第 i 个 subject 所关联的 object
-            if all_bboxes[i]['category_id'] != subject_category_id:
-                continue
-            seen = set()
-            candidates = []
-            arr = []
-            for j in range(N):
-
-                pos_flag_count = sum(
-                    list(
-                        map(
-                            lambda x: 1 if x else 0,
-                            bbox_relative_pos(
-                                all_bboxes[i]['bbox'], all_bboxes[j]['bbox']
-                            ),
-                        )
-                    )
-                )
-                if pos_flag_count > 1:
-                    continue
-                if (
-                    all_bboxes[j]['category_id'] != object_category_id
-                    or j in used
-                    or dis[i][j] == MAX_DIS_OF_POINT
-                ):
-                    continue
-                left, right, _, _ = bbox_relative_pos(
-                    all_bboxes[i]['bbox'], all_bboxes[j]['bbox']
-                )  # 由  pos_flag_count 相关逻辑保证本段逻辑准确性
-                if left or right:
-                    one_way_dis = all_bboxes[i]['bbox'][2] - all_bboxes[i]['bbox'][0]
-                else:
-                    one_way_dis = all_bboxes[i]['bbox'][3] - all_bboxes[i]['bbox'][1]
-                if dis[i][j] > one_way_dis:
-                    continue
-                arr.append((dis[i][j], j))
-
-            arr.sort(key=lambda x: x[0])
-            if len(arr) > 0:
-                """
-                bug: 离该subject 最近的 object 可能跨越了其它的 subject。
-                比如 [this subect] [some sbuject] [the nearest object of subject]
-                """
-                if may_find_other_nearest_bbox(i, arr[0][1]) >= arr[0][0]:
-
-                    candidates.append(arr[0][1])
-                    seen.add(arr[0][1])
-
-            # 已经获取初始种子
-            for j in set(candidates):
-                tmp = []
-                for k in range(i + 1, N):
-                    pos_flag_count = sum(
-                        list(
-                            map(
-                                lambda x: 1 if x else 0,
-                                bbox_relative_pos(
-                                    all_bboxes[j]['bbox'], all_bboxes[k]['bbox']
-                                ),
-                            )
-                        )
-                    )
-
-                    if pos_flag_count > 1:
-                        continue
-
-                    if (
-                        all_bboxes[k]['category_id'] != object_category_id
-                        or k in used
-                        or k in seen
-                        or dis[j][k] == MAX_DIS_OF_POINT
-                        or dis[j][k] > dis[i][j]
-                    ):
-                        continue
-
-                    is_nearest = True
-                    for ni in range(i + 1, N):
-                        if ni in (j, k) or ni in used or ni in seen:
-                            continue
-
-                        if not float_gt(dis[ni][k], dis[j][k]):
-                            is_nearest = False
-                            break
-
-                    if is_nearest:
-                        nx0, ny0, nx1, ny1 = expand_bbbox(list(seen) + [k])
-                        n_dis = bbox_distance(
-                            all_bboxes[i]['bbox'], [nx0, ny0, nx1, ny1]
-                        )
-                        if float_gt(dis[i][j], n_dis):
-                            continue
-                        tmp.append(k)
-                        seen.add(k)
-
-                candidates = tmp
-                if len(candidates) == 0:
-                    break
-
-            # 已经获取到某个 figure 下所有的最靠近的 captions,以及最靠近这些 captions 的 captions 。
-            # 先扩一下 bbox,
-            ox0, oy0, ox1, oy1 = expand_bbbox(list(seen) + [i])
-            ix0, iy0, ix1, iy1 = all_bboxes[i]['bbox']
-
-            # 分成了 4 个截取空间,需要计算落在每个截取空间下 objects 合并后占据的矩形面积
-            caption_poses = [
-                [ox0, oy0, ix0, oy1],
-                [ox0, oy0, ox1, iy0],
-                [ox0, iy1, ox1, oy1],
-                [ix1, oy0, ox1, oy1],
-            ]
-
-            caption_areas = []
-            for bbox in caption_poses:
-                embed_arr = []
-                for idx in seen:
-                    if (
-                        calculate_overlap_area_in_bbox1_area_ratio(
-                            all_bboxes[idx]['bbox'], bbox
-                        )
-                        > CAPATION_OVERLAP_AREA_RATIO
-                    ):
-                        embed_arr.append(idx)
-
-                if len(embed_arr) > 0:
-                    embed_x0 = min([all_bboxes[idx]['bbox'][0] for idx in embed_arr])
-                    embed_y0 = min([all_bboxes[idx]['bbox'][1] for idx in embed_arr])
-                    embed_x1 = max([all_bboxes[idx]['bbox'][2] for idx in embed_arr])
-                    embed_y1 = max([all_bboxes[idx]['bbox'][3] for idx in embed_arr])
-                    caption_areas.append(
-                        int(abs(embed_x1 - embed_x0) * abs(embed_y1 - embed_y0))
-                    )
-                else:
-                    caption_areas.append(0)
-
-            subject_object_relation_map[i] = []
-            if max(caption_areas) > 0:
-                max_area_idx = caption_areas.index(max(caption_areas))
-                caption_bbox = caption_poses[max_area_idx]
-
-                for j in seen:
-                    if (
-                        calculate_overlap_area_in_bbox1_area_ratio(
-                            all_bboxes[j]['bbox'], caption_bbox
-                        )
-                        > CAPATION_OVERLAP_AREA_RATIO
-                    ):
-                        used.add(j)
-                        subject_object_relation_map[i].append(j)
-
-        for i in sorted(subject_object_relation_map.keys()):
-            result = {
-                'subject_body': all_bboxes[i]['bbox'],
-                'all': all_bboxes[i]['bbox'],
-                'score': all_bboxes[i]['score'],
-            }
-
-            if len(subject_object_relation_map[i]) > 0:
-                x0 = min(
-                    [all_bboxes[j]['bbox'][0] for j in subject_object_relation_map[i]]
-                )
-                y0 = min(
-                    [all_bboxes[j]['bbox'][1] for j in subject_object_relation_map[i]]
-                )
-                x1 = max(
-                    [all_bboxes[j]['bbox'][2] for j in subject_object_relation_map[i]]
-                )
-                y1 = max(
-                    [all_bboxes[j]['bbox'][3] for j in subject_object_relation_map[i]]
-                )
-                result['object_body'] = [x0, y0, x1, y1]
-                result['all'] = [
-                    min(x0, all_bboxes[i]['bbox'][0]),
-                    min(y0, all_bboxes[i]['bbox'][1]),
-                    max(x1, all_bboxes[i]['bbox'][2]),
-                    max(y1, all_bboxes[i]['bbox'][3]),
-                ]
-            ret.append(result)
-
-        total_subject_object_dis = 0
-        # 计算已经配对的 distance 距离
-        for i in subject_object_relation_map.keys():
-            for j in subject_object_relation_map[i]:
-                total_subject_object_dis += bbox_distance(
-                    all_bboxes[i]['bbox'], all_bboxes[j]['bbox']
-                )
-
-        # 计算未匹配的 subject 和 object 的距离(非精确版)
-        with_caption_subject = set(
-            [
-                key
-                for key in subject_object_relation_map.keys()
-                if len(subject_object_relation_map[i]) > 0
-            ]
-        )
-        for i in range(N):
-            if all_bboxes[i]['category_id'] != object_category_id or i in used:
-                continue
-            candidates = []
-            for j in range(N):
-                if (
-                    all_bboxes[j]['category_id'] != subject_category_id
-                    or j in with_caption_subject
-                ):
-                    continue
-                candidates.append((dis[i][j], j))
-            if len(candidates) > 0:
-                candidates.sort(key=lambda x: x[0])
-                total_subject_object_dis += candidates[0][1]
-                with_caption_subject.add(j)
-        return ret, total_subject_object_dis
-
     def __tie_up_category_by_distance_v2(
         self,
         page_no: int,
@@ -879,52 +489,12 @@ class MagicModel:
         return ret
 
     def get_imgs(self, page_no: int):
-        with_captions, _ = self.__tie_up_category_by_distance(page_no, 3, 4)
-        with_footnotes, _ = self.__tie_up_category_by_distance(
-            page_no, 3, CategoryId.ImageFootnote
-        )
-        ret = []
-        N, M = len(with_captions), len(with_footnotes)
-        assert N == M
-        for i in range(N):
-            record = {
-                'score': with_captions[i]['score'],
-                'img_caption_bbox': with_captions[i].get('object_body', None),
-                'img_body_bbox': with_captions[i]['subject_body'],
-                'img_footnote_bbox': with_footnotes[i].get('object_body', None),
-            }
-
-            x0 = min(with_captions[i]['all'][0], with_footnotes[i]['all'][0])
-            y0 = min(with_captions[i]['all'][1], with_footnotes[i]['all'][1])
-            x1 = max(with_captions[i]['all'][2], with_footnotes[i]['all'][2])
-            y1 = max(with_captions[i]['all'][3], with_footnotes[i]['all'][3])
-            record['bbox'] = [x0, y0, x1, y1]
-            ret.append(record)
-        return ret
+        return self.get_imgs_v2(page_no)
 
     def get_tables(
         self, page_no: int
     ) -> list:  # 3个坐标, caption, table主体,table-note
-        with_captions, _ = self.__tie_up_category_by_distance(page_no, 5, 6)
-        with_footnotes, _ = self.__tie_up_category_by_distance(page_no, 5, 7)
-        ret = []
-        N, M = len(with_captions), len(with_footnotes)
-        assert N == M
-        for i in range(N):
-            record = {
-                'score': with_captions[i]['score'],
-                'table_caption_bbox': with_captions[i].get('object_body', None),
-                'table_body_bbox': with_captions[i]['subject_body'],
-                'table_footnote_bbox': with_footnotes[i].get('object_body', None),
-            }
-
-            x0 = min(with_captions[i]['all'][0], with_footnotes[i]['all'][0])
-            y0 = min(with_captions[i]['all'][1], with_footnotes[i]['all'][1])
-            x1 = max(with_captions[i]['all'][2], with_footnotes[i]['all'][2])
-            y1 = max(with_captions[i]['all'][3], with_footnotes[i]['all'][3])
-            record['bbox'] = [x0, y0, x1, y1]
-            ret.append(record)
-        return ret
+        return self.get_tables_v2(page_no)
 
     def get_equations(self, page_no: int) -> list:  # 有坐标,也有字
         inline_equations = self.__get_blocks_by_type(
@@ -1043,4 +613,3 @@ class MagicModel:
 
     def get_model_list(self, page_no):
         return self.__model_list[page_no]
-

+ 0 - 22
magic_pdf/pdf_parse_by_ocr.py

@@ -1,22 +0,0 @@
-from magic_pdf.config.enums import SupportedPdfParseMethod
-from magic_pdf.data.dataset import Dataset
-from magic_pdf.pdf_parse_union_core_v2 import pdf_parse_union
-
-
-def parse_pdf_by_ocr(dataset: Dataset,
-                     model_list,
-                     imageWriter,
-                     start_page_id=0,
-                     end_page_id=None,
-                     debug_mode=False,
-                     lang=None,
-                     ):
-    return pdf_parse_union(model_list,
-                           dataset,
-                           imageWriter,
-                           SupportedPdfParseMethod.OCR,
-                           start_page_id=start_page_id,
-                           end_page_id=end_page_id,
-                           debug_mode=debug_mode,
-                           lang=lang,
-                           )

+ 0 - 23
magic_pdf/pdf_parse_by_txt.py

@@ -1,23 +0,0 @@
-from magic_pdf.config.enums import SupportedPdfParseMethod
-from magic_pdf.data.dataset import Dataset
-from magic_pdf.pdf_parse_union_core_v2 import pdf_parse_union
-
-
-def parse_pdf_by_txt(
-    dataset: Dataset,
-    model_list,
-    imageWriter,
-    start_page_id=0,
-    end_page_id=None,
-    debug_mode=False,
-    lang=None,
-):
-    return pdf_parse_union(model_list,
-                           dataset,
-                           imageWriter,
-                           SupportedPdfParseMethod.TXT,
-                           start_page_id=start_page_id,
-                           end_page_id=end_page_id,
-                           debug_mode=debug_mode,
-                           lang=lang,
-                           )

+ 0 - 99
magic_pdf/pipe/AbsPipe.py

@@ -1,99 +0,0 @@
-from abc import ABC, abstractmethod
-
-from magic_pdf.config.drop_reason import DropReason
-from magic_pdf.config.make_content_config import DropMode, MakeMode
-from magic_pdf.data.data_reader_writer import DataWriter
-from magic_pdf.data.dataset import Dataset
-from magic_pdf.dict2md.ocr_mkcontent import union_make
-from magic_pdf.filter.pdf_classify_by_type import classify
-from magic_pdf.filter.pdf_meta_scan import pdf_meta_scan
-from magic_pdf.libs.json_compressor import JsonCompressor
-
-
-class AbsPipe(ABC):
-    """txt和ocr处理的抽象类."""
-    PIP_OCR = 'ocr'
-    PIP_TXT = 'txt'
-
-    def __init__(self, dataset: Dataset, model_list: list, image_writer: DataWriter, is_debug: bool = False,
-                 start_page_id=0, end_page_id=None, lang=None, layout_model=None, formula_enable=None, table_enable=None):
-        self.dataset = dataset
-        self.model_list = model_list
-        self.image_writer = image_writer
-        self.pdf_mid_data = None  # 未压缩
-        self.is_debug = is_debug
-        self.start_page_id = start_page_id
-        self.end_page_id = end_page_id
-        self.lang = lang
-        self.layout_model = layout_model
-        self.formula_enable = formula_enable
-        self.table_enable = table_enable
-
-    def get_compress_pdf_mid_data(self):
-        return JsonCompressor.compress_json(self.pdf_mid_data)
-
-    @abstractmethod
-    def pipe_classify(self):
-        """有状态的分类."""
-        raise NotImplementedError
-
-    @abstractmethod
-    def pipe_analyze(self):
-        """有状态的跑模型分析."""
-        raise NotImplementedError
-
-    @abstractmethod
-    def pipe_parse(self):
-        """有状态的解析."""
-        raise NotImplementedError
-
-    def pipe_mk_uni_format(self, img_parent_path: str, drop_mode=DropMode.WHOLE_PDF):
-        content_list = AbsPipe.mk_uni_format(self.get_compress_pdf_mid_data(), img_parent_path, drop_mode)
-        return content_list
-
-    def pipe_mk_markdown(self, img_parent_path: str, drop_mode=DropMode.WHOLE_PDF, md_make_mode=MakeMode.MM_MD):
-        md_content = AbsPipe.mk_markdown(self.get_compress_pdf_mid_data(), img_parent_path, drop_mode, md_make_mode)
-        return md_content
-
-    @staticmethod
-    def classify(pdf_bytes: bytes) -> str:
-        """根据pdf的元数据,判断是文本pdf,还是ocr pdf."""
-        pdf_meta = pdf_meta_scan(pdf_bytes)
-        if pdf_meta.get('_need_drop', False):  # 如果返回了需要丢弃的标志,则抛出异常
-            raise Exception(f"pdf meta_scan need_drop,reason is {pdf_meta['_drop_reason']}")
-        else:
-            is_encrypted = pdf_meta['is_encrypted']
-            is_needs_password = pdf_meta['is_needs_password']
-            if is_encrypted or is_needs_password:  # 加密的,需要密码的,没有页面的,都不处理
-                raise Exception(f'pdf meta_scan need_drop,reason is {DropReason.ENCRYPTED}')
-            else:
-                is_text_pdf, results = classify(
-                    pdf_meta['total_page'],
-                    pdf_meta['page_width_pts'],
-                    pdf_meta['page_height_pts'],
-                    pdf_meta['image_info_per_page'],
-                    pdf_meta['text_len_per_page'],
-                    pdf_meta['imgs_per_page'],
-                    pdf_meta['text_layout_per_page'],
-                    pdf_meta['invalid_chars'],
-                )
-                if is_text_pdf:
-                    return AbsPipe.PIP_TXT
-                else:
-                    return AbsPipe.PIP_OCR
-
-    @staticmethod
-    def mk_uni_format(compressed_pdf_mid_data: str, img_buket_path: str, drop_mode=DropMode.WHOLE_PDF) -> list:
-        """根据pdf类型,生成统一格式content_list."""
-        pdf_mid_data = JsonCompressor.decompress_json(compressed_pdf_mid_data)
-        pdf_info_list = pdf_mid_data['pdf_info']
-        content_list = union_make(pdf_info_list, MakeMode.STANDARD_FORMAT, drop_mode, img_buket_path)
-        return content_list
-
-    @staticmethod
-    def mk_markdown(compressed_pdf_mid_data: str, img_buket_path: str, drop_mode=DropMode.WHOLE_PDF, md_make_mode=MakeMode.MM_MD) -> list:
-        """根据pdf类型,markdown."""
-        pdf_mid_data = JsonCompressor.decompress_json(compressed_pdf_mid_data)
-        pdf_info_list = pdf_mid_data['pdf_info']
-        md_content = union_make(pdf_info_list, md_make_mode, drop_mode, img_buket_path)
-        return md_content

+ 0 - 80
magic_pdf/pipe/OCRPipe.py

@@ -1,80 +0,0 @@
-from loguru import logger
-
-from magic_pdf.config.make_content_config import DropMode, MakeMode
-from magic_pdf.data.data_reader_writer import DataWriter
-from magic_pdf.data.dataset import Dataset
-from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
-from magic_pdf.pipe.AbsPipe import AbsPipe
-from magic_pdf.user_api import parse_ocr_pdf
-
-
-class OCRPipe(AbsPipe):
-    def __init__(
-        self,
-        dataset: Dataset,
-        model_list: list,
-        image_writer: DataWriter,
-        is_debug: bool = False,
-        start_page_id=0,
-        end_page_id=None,
-        lang=None,
-        layout_model=None,
-        formula_enable=None,
-        table_enable=None,
-    ):
-        super().__init__(
-            dataset,
-            model_list,
-            image_writer,
-            is_debug,
-            start_page_id,
-            end_page_id,
-            lang,
-            layout_model,
-            formula_enable,
-            table_enable,
-        )
-
-    def pipe_classify(self):
-        pass
-
-    def pipe_analyze(self):
-        self.infer_res = doc_analyze(
-            self.dataset,
-            ocr=True,
-            start_page_id=self.start_page_id,
-            end_page_id=self.end_page_id,
-            lang=self.lang,
-            layout_model=self.layout_model,
-            formula_enable=self.formula_enable,
-            table_enable=self.table_enable,
-        )
-
-    def pipe_parse(self):
-        self.pdf_mid_data = parse_ocr_pdf(
-            self.dataset,
-            self.infer_res,
-            self.image_writer,
-            is_debug=self.is_debug,
-            start_page_id=self.start_page_id,
-            end_page_id=self.end_page_id,
-            lang=self.lang,
-            layout_model=self.layout_model,
-            formula_enable=self.formula_enable,
-            table_enable=self.table_enable,
-        )
-
-    def pipe_mk_uni_format(self, img_parent_path: str, drop_mode=DropMode.WHOLE_PDF):
-        result = super().pipe_mk_uni_format(img_parent_path, drop_mode)
-        logger.info('ocr_pipe mk content list finished')
-        return result
-
-    def pipe_mk_markdown(
-        self,
-        img_parent_path: str,
-        drop_mode=DropMode.WHOLE_PDF,
-        md_make_mode=MakeMode.MM_MD,
-    ):
-        result = super().pipe_mk_markdown(img_parent_path, drop_mode, md_make_mode)
-        logger.info(f'ocr_pipe mk {md_make_mode} finished')
-        return result

+ 0 - 42
magic_pdf/pipe/TXTPipe.py

@@ -1,42 +0,0 @@
-from loguru import logger
-
-from magic_pdf.config.make_content_config import DropMode, MakeMode
-from magic_pdf.data.data_reader_writer import DataWriter
-from magic_pdf.data.dataset import Dataset
-from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
-from magic_pdf.pipe.AbsPipe import AbsPipe
-from magic_pdf.user_api import parse_txt_pdf
-
-
-class TXTPipe(AbsPipe):
-
-    def __init__(self, dataset: Dataset, model_list: list, image_writer: DataWriter, is_debug: bool = False,
-                 start_page_id=0, end_page_id=None, lang=None,
-                 layout_model=None, formula_enable=None, table_enable=None):
-        super().__init__(dataset, model_list, image_writer, is_debug, start_page_id, end_page_id, lang,
-                         layout_model, formula_enable, table_enable)
-
-    def pipe_classify(self):
-        pass
-
-    def pipe_analyze(self):
-        self.model_list = doc_analyze(self.dataset, ocr=False,
-                                      start_page_id=self.start_page_id, end_page_id=self.end_page_id,
-                                      lang=self.lang, layout_model=self.layout_model,
-                                      formula_enable=self.formula_enable, table_enable=self.table_enable)
-
-    def pipe_parse(self):
-        self.pdf_mid_data = parse_txt_pdf(self.dataset, self.model_list, self.image_writer, is_debug=self.is_debug,
-                                          start_page_id=self.start_page_id, end_page_id=self.end_page_id,
-                                          lang=self.lang, layout_model=self.layout_model,
-                                          formula_enable=self.formula_enable, table_enable=self.table_enable)
-
-    def pipe_mk_uni_format(self, img_parent_path: str, drop_mode=DropMode.WHOLE_PDF):
-        result = super().pipe_mk_uni_format(img_parent_path, drop_mode)
-        logger.info('txt_pipe mk content list finished')
-        return result
-
-    def pipe_mk_markdown(self, img_parent_path: str, drop_mode=DropMode.WHOLE_PDF, md_make_mode=MakeMode.MM_MD):
-        result = super().pipe_mk_markdown(img_parent_path, drop_mode, md_make_mode)
-        logger.info(f'txt_pipe mk {md_make_mode} finished')
-        return result

+ 0 - 150
magic_pdf/pipe/UNIPipe.py

@@ -1,150 +0,0 @@
-import json
-
-from loguru import logger
-
-from magic_pdf.config.make_content_config import DropMode, MakeMode
-from magic_pdf.data.data_reader_writer import DataWriter
-from magic_pdf.data.dataset import Dataset
-from magic_pdf.libs.commons import join_path
-from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
-from magic_pdf.pipe.AbsPipe import AbsPipe
-from magic_pdf.user_api import parse_ocr_pdf, parse_union_pdf
-
-
-class UNIPipe(AbsPipe):
-
-    def __init__(
-        self,
-        dataset: Dataset,
-        jso_useful_key: dict,
-        image_writer: DataWriter,
-        is_debug: bool = False,
-        start_page_id=0,
-        end_page_id=None,
-        lang=None,
-        layout_model=None,
-        formula_enable=None,
-        table_enable=None,
-    ):
-        self.pdf_type = jso_useful_key['_pdf_type']
-        super().__init__(
-            dataset,
-            jso_useful_key['model_list'],
-            image_writer,
-            is_debug,
-            start_page_id,
-            end_page_id,
-            lang,
-            layout_model,
-            formula_enable,
-            table_enable,
-        )
-        if len(self.model_list) == 0:
-            self.input_model_is_empty = True
-        else:
-            self.input_model_is_empty = False
-
-    def pipe_classify(self):
-        self.pdf_type = AbsPipe.classify(self.pdf_bytes)
-
-    def pipe_analyze(self):
-        if self.pdf_type == self.PIP_TXT:
-            self.model_list = doc_analyze(
-                self.dataset,
-                ocr=False,
-                start_page_id=self.start_page_id,
-                end_page_id=self.end_page_id,
-                lang=self.lang,
-                layout_model=self.layout_model,
-                formula_enable=self.formula_enable,
-                table_enable=self.table_enable,
-            )
-        elif self.pdf_type == self.PIP_OCR:
-            self.model_list = doc_analyze(
-                self.dataset,
-                ocr=True,
-                start_page_id=self.start_page_id,
-                end_page_id=self.end_page_id,
-                lang=self.lang,
-                layout_model=self.layout_model,
-                formula_enable=self.formula_enable,
-                table_enable=self.table_enable,
-            )
-
-    def pipe_parse(self):
-        if self.pdf_type == self.PIP_TXT:
-            self.pdf_mid_data = parse_union_pdf(
-                self.dataset,
-                self.model_list,
-                self.image_writer,
-                is_debug=self.is_debug,
-                start_page_id=self.start_page_id,
-                end_page_id=self.end_page_id,
-                lang=self.lang,
-                layout_model=self.layout_model,
-                formula_enable=self.formula_enable,
-                table_enable=self.table_enable,
-            )
-        elif self.pdf_type == self.PIP_OCR:
-            self.pdf_mid_data = parse_ocr_pdf(
-                self.dataset,
-                self.model_list,
-                self.image_writer,
-                is_debug=self.is_debug,
-                start_page_id=self.start_page_id,
-                end_page_id=self.end_page_id,
-                lang=self.lang,
-            )
-
-    def pipe_mk_uni_format(
-        self, img_parent_path: str, drop_mode=DropMode.NONE_WITH_REASON
-    ):
-        result = super().pipe_mk_uni_format(img_parent_path, drop_mode)
-        logger.info('uni_pipe mk content list finished')
-        return result
-
-    def pipe_mk_markdown(
-        self,
-        img_parent_path: str,
-        drop_mode=DropMode.WHOLE_PDF,
-        md_make_mode=MakeMode.MM_MD,
-    ):
-        result = super().pipe_mk_markdown(img_parent_path, drop_mode, md_make_mode)
-        logger.info(f'uni_pipe mk {md_make_mode} finished')
-        return result
-
-
-if __name__ == '__main__':
-    # 测试
-    from magic_pdf.data.data_reader_writer import DataReader
-
-    drw = DataReader(r'D:/project/20231108code-clean')
-
-    pdf_file_path = r'linshixuqiu\19983-00.pdf'
-    model_file_path = r'linshixuqiu\19983-00.json'
-    pdf_bytes = drw.read(pdf_file_path)
-    model_json_txt = drw.read(model_file_path).decode()
-    model_list = json.loads(model_json_txt)
-    write_path = r'D:\project\20231108code-clean\linshixuqiu\19983-00'
-    img_bucket_path = 'imgs'
-    img_writer = DataWriter(join_path(write_path, img_bucket_path))
-
-    # pdf_type = UNIPipe.classify(pdf_bytes)
-    # jso_useful_key = {
-    #     "_pdf_type": pdf_type,
-    #     "model_list": model_list
-    # }
-
-    jso_useful_key = {'_pdf_type': '', 'model_list': model_list}
-    pipe = UNIPipe(pdf_bytes, jso_useful_key, img_writer)
-    pipe.pipe_classify()
-    pipe.pipe_parse()
-    md_content = pipe.pipe_mk_markdown(img_bucket_path)
-    content_list = pipe.pipe_mk_uni_format(img_bucket_path)
-
-    md_writer = DataWriter(write_path)
-    md_writer.write_string('19983-00.md', md_content)
-    md_writer.write_string(
-        '19983-00.json', json.dumps(pipe.pdf_mid_data, ensure_ascii=False, indent=4)
-    )
-    md_writer.write_string('19983-00.txt', str(content_list))

+ 0 - 0
magic_pdf/pipe/__init__.py


+ 0 - 17
magic_pdf/rw/AbsReaderWriter.py

@@ -1,17 +0,0 @@
-from abc import ABC, abstractmethod
-
-
-class AbsReaderWriter(ABC):
-    MODE_TXT = "text"
-    MODE_BIN = "binary"
-    @abstractmethod
-    def read(self, path: str, mode=MODE_TXT):
-        raise NotImplementedError
-
-    @abstractmethod
-    def write(self, content: str, path: str, mode=MODE_TXT):
-        raise NotImplementedError
-
-    @abstractmethod
-    def read_offset(self, path: str, offset=0, limit=None) -> bytes:
-        raise NotImplementedError

+ 0 - 74
magic_pdf/rw/DiskReaderWriter.py

@@ -1,74 +0,0 @@
-import os
-from magic_pdf.rw.AbsReaderWriter import AbsReaderWriter
-from loguru import logger
-
-
-class DiskReaderWriter(AbsReaderWriter):
-    def __init__(self, parent_path, encoding="utf-8"):
-        self.path = parent_path
-        self.encoding = encoding
-
-    def read(self, path, mode=AbsReaderWriter.MODE_TXT):
-        if os.path.isabs(path):
-            abspath = path
-        else:
-            abspath = os.path.join(self.path, path)
-        if not os.path.exists(abspath):
-            logger.error(f"file {abspath} not exists")
-            raise Exception(f"file {abspath} no exists")
-        if mode == AbsReaderWriter.MODE_TXT:
-            with open(abspath, "r", encoding=self.encoding) as f:
-                return f.read()
-        elif mode == AbsReaderWriter.MODE_BIN:
-            with open(abspath, "rb") as f:
-                return f.read()
-        else:
-            raise ValueError("Invalid mode. Use 'text' or 'binary'.")
-
-    def write(self, content, path, mode=AbsReaderWriter.MODE_TXT):
-        if os.path.isabs(path):
-            abspath = path
-        else:
-            abspath = os.path.join(self.path, path)
-        directory_path = os.path.dirname(abspath)
-        if not os.path.exists(directory_path):
-            os.makedirs(directory_path)
-        if mode == AbsReaderWriter.MODE_TXT:
-            with open(abspath, "w", encoding=self.encoding, errors="replace") as f:
-                f.write(content)
-
-        elif mode == AbsReaderWriter.MODE_BIN:
-            with open(abspath, "wb") as f:
-                f.write(content)
-        else:
-            raise ValueError("Invalid mode. Use 'text' or 'binary'.")
-
-    def read_offset(self, path: str, offset=0, limit=None):
-        abspath = path
-        if not os.path.isabs(path):
-            abspath = os.path.join(self.path, path)
-        with open(abspath, "rb") as f:
-            f.seek(offset)
-            return f.read(limit)
-
-
-if __name__ == "__main__":
-    if 0:
-        file_path = "io/test/example.txt"
-        drw = DiskReaderWriter("D:\projects\papayfork\Magic-PDF\magic_pdf")
-
-        # 写入内容到文件
-        drw.write(b"Hello, World!", path="io/test/example.txt", mode="binary")
-
-        # 从文件读取内容
-        content = drw.read(path=file_path)
-        if content:
-            logger.info(f"从 {file_path} 读取的内容: {content}")
-    if 1:
-        drw = DiskReaderWriter("/opt/data/pdf/resources/test/io/")
-        content_bin = drw.read_offset("1.txt")
-        assert content_bin == b"ABCD!"
-
-        content_bin = drw.read_offset("1.txt", offset=1, limit=2)
-        assert content_bin == b"BC"
-

+ 0 - 142
magic_pdf/rw/S3ReaderWriter.py

@@ -1,142 +0,0 @@
-from magic_pdf.rw.AbsReaderWriter import AbsReaderWriter
-from magic_pdf.libs.commons import parse_bucket_key, join_path
-import boto3
-from loguru import logger
-from botocore.config import Config
-
-
-class S3ReaderWriter(AbsReaderWriter):
-    def __init__(
-        self,
-        ak: str,
-        sk: str,
-        endpoint_url: str,
-        addressing_style: str = "auto",
-        parent_path: str = "",
-    ):
-        self.client = self._get_client(ak, sk, endpoint_url, addressing_style)
-        self.path = parent_path
-
-    def _get_client(self, ak: str, sk: str, endpoint_url: str, addressing_style: str):
-        s3_client = boto3.client(
-            service_name="s3",
-            aws_access_key_id=ak,
-            aws_secret_access_key=sk,
-            endpoint_url=endpoint_url,
-            config=Config(
-                s3={"addressing_style": addressing_style},
-                retries={"max_attempts": 5, "mode": "standard"},
-            ),
-        )
-        return s3_client
-
-    def read(self, s3_relative_path, mode=AbsReaderWriter.MODE_TXT, encoding="utf-8"):
-        if s3_relative_path.startswith("s3://"):
-            s3_path = s3_relative_path
-        else:
-            s3_path = join_path(self.path, s3_relative_path)
-        bucket_name, key = parse_bucket_key(s3_path)
-        res = self.client.get_object(Bucket=bucket_name, Key=key)
-        body = res["Body"].read()
-        if mode == AbsReaderWriter.MODE_TXT:
-            data = body.decode(encoding)  # Decode bytes to text
-        elif mode == AbsReaderWriter.MODE_BIN:
-            data = body
-        else:
-            raise ValueError("Invalid mode. Use 'text' or 'binary'.")
-        return data
-
-    def write(self, content, s3_relative_path, mode=AbsReaderWriter.MODE_TXT, encoding="utf-8"):
-        if s3_relative_path.startswith("s3://"):
-            s3_path = s3_relative_path
-        else:
-            s3_path = join_path(self.path, s3_relative_path)
-        if mode == AbsReaderWriter.MODE_TXT:
-            body = content.encode(encoding)  # Encode text data as bytes
-        elif mode == AbsReaderWriter.MODE_BIN:
-            body = content
-        else:
-            raise ValueError("Invalid mode. Use 'text' or 'binary'.")
-        bucket_name, key = parse_bucket_key(s3_path)
-        self.client.put_object(Body=body, Bucket=bucket_name, Key=key)
-        logger.info(f"内容已写入 {s3_path} ")
-
-    def read_offset(self, path: str, offset=0, limit=None) -> bytes:
-        if path.startswith("s3://"):
-            s3_path = path
-        else:
-            s3_path = join_path(self.path, path)
-        bucket_name, key = parse_bucket_key(s3_path)
-
-        range_header = (
-            f"bytes={offset}-{offset+limit-1}" if limit else f"bytes={offset}-"
-        )
-        res = self.client.get_object(Bucket=bucket_name, Key=key, Range=range_header)
-        return res["Body"].read()
-
-
-if __name__ == "__main__":
-    if 0:
-        # Config the connection info
-        ak = ""
-        sk = ""
-        endpoint_url = ""
-        addressing_style = "auto"
-        bucket_name = ""
-        # Create an S3ReaderWriter object
-        s3_reader_writer = S3ReaderWriter(
-            ak, sk, endpoint_url, addressing_style, "s3://bucket_name/"
-        )
-
-        # Write text data to S3
-        text_data = "This is some text data"
-        s3_reader_writer.write(
-            text_data,
-            s3_relative_path=f"s3://{bucket_name}/ebook/test/test.json",
-            mode=AbsReaderWriter.MODE_TXT,
-        )
-
-        # Read text data from S3
-        text_data_read = s3_reader_writer.read(
-            s3_relative_path=f"s3://{bucket_name}/ebook/test/test.json", mode=AbsReaderWriter.MODE_TXT
-        )
-        logger.info(f"Read text data from S3: {text_data_read}")
-        # Write binary data to S3
-        binary_data = b"This is some binary data"
-        s3_reader_writer.write(
-            text_data,
-            s3_relative_path=f"s3://{bucket_name}/ebook/test/test.json",
-            mode=AbsReaderWriter.MODE_BIN,
-        )
-
-        # Read binary data from S3
-        binary_data_read = s3_reader_writer.read(
-            s3_relative_path=f"s3://{bucket_name}/ebook/test/test.json", mode=AbsReaderWriter.MODE_BIN
-        )
-        logger.info(f"Read binary data from S3: {binary_data_read}")
-
-        # Range Read text data from S3
-        binary_data_read = s3_reader_writer.read_offset(
-            path=f"s3://{bucket_name}/ebook/test/test.json", offset=0, limit=10
-        )
-        logger.info(f"Read binary data from S3: {binary_data_read}")
-    if 1:
-        import os
-        import json
-
-        ak = os.getenv("AK", "")
-        sk = os.getenv("SK", "")
-        endpoint_url = os.getenv("ENDPOINT", "")
-        bucket = os.getenv("S3_BUCKET", "")
-        prefix = os.getenv("S3_PREFIX", "")
-        key_basename = os.getenv("S3_KEY_BASENAME", "")
-        s3_reader_writer = S3ReaderWriter(
-            ak, sk, endpoint_url, "auto", f"s3://{bucket}/{prefix}"
-        )
-        content_bin = s3_reader_writer.read_offset(key_basename)
-        assert content_bin[:10] == b'{"track_id'
-        assert content_bin[-10:] == b'r":null}}\n'
-
-        content_bin = s3_reader_writer.read_offset(key_basename, offset=424, limit=426)
-        jso = json.dumps(content_bin.decode("utf-8"))
-        print(jso)

+ 0 - 0
magic_pdf/rw/__init__.py


+ 0 - 144
magic_pdf/user_api.py

@@ -1,144 +0,0 @@
-"""用户输入: model数组,每个元素代表一个页面 pdf在s3的路径 截图保存的s3位置.
-
-然后:
-    1)根据s3路径,调用spark集群的api,拿到ak,sk,endpoint,构造出s3PDFReader
-    2)根据用户输入的s3地址,调用spark集群的api,拿到ak,sk,endpoint,构造出s3ImageWriter
-
-其余部分至于构造s3cli, 获取ak,sk都在code-clean里写代码完成。不要反向依赖!!!
-"""
-
-from loguru import logger
-
-from magic_pdf.data.data_reader_writer import DataWriter
-from magic_pdf.data.dataset import Dataset
-from magic_pdf.libs.version import __version__
-from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
-from magic_pdf.pdf_parse_by_ocr import parse_pdf_by_ocr
-from magic_pdf.pdf_parse_by_txt import parse_pdf_by_txt
-from magic_pdf.config.constants import PARSE_TYPE_TXT, PARSE_TYPE_OCR
-
-
-def parse_txt_pdf(
-    dataset: Dataset,
-    model_list: list,
-    imageWriter: DataWriter,
-    is_debug=False,
-    start_page_id=0,
-    end_page_id=None,
-    lang=None,
-    *args,
-    **kwargs
-):
-    """解析文本类pdf."""
-    pdf_info_dict = parse_pdf_by_txt(
-        dataset,
-        model_list,
-        imageWriter,
-        start_page_id=start_page_id,
-        end_page_id=end_page_id,
-        debug_mode=is_debug,
-        lang=lang,
-    )
-
-    pdf_info_dict['_parse_type'] = PARSE_TYPE_TXT
-
-    pdf_info_dict['_version_name'] = __version__
-
-    if lang is not None:
-        pdf_info_dict['_lang'] = lang
-
-    return pdf_info_dict
-
-
-def parse_ocr_pdf(
-    dataset: Dataset,
-    model_list: list,
-    imageWriter: DataWriter,
-    is_debug=False,
-    start_page_id=0,
-    end_page_id=None,
-    lang=None,
-    *args,
-    **kwargs
-):
-    """解析ocr类pdf."""
-    pdf_info_dict = parse_pdf_by_ocr(
-        dataset,
-        model_list,
-        imageWriter,
-        start_page_id=start_page_id,
-        end_page_id=end_page_id,
-        debug_mode=is_debug,
-        lang=lang,
-    )
-
-    pdf_info_dict['_parse_type'] = PARSE_TYPE_OCR
-
-    pdf_info_dict['_version_name'] = __version__
-
-    if lang is not None:
-        pdf_info_dict['_lang'] = lang
-
-    return pdf_info_dict
-
-
-def parse_union_pdf(
-    dataset: Dataset,
-    model_list: list,
-    imageWriter: DataWriter,
-    is_debug=False,
-    start_page_id=0,
-    end_page_id=None,
-    lang=None,
-    *args,
-    **kwargs
-):
-    """ocr和文本混合的pdf,全部解析出来."""
-
-    def parse_pdf(method):
-        try:
-            return method(
-                dataset,
-                model_list,
-                imageWriter,
-                start_page_id=start_page_id,
-                end_page_id=end_page_id,
-                debug_mode=is_debug,
-                lang=lang,
-            )
-        except Exception as e:
-            logger.exception(e)
-            return None
-
-    pdf_info_dict = parse_pdf(parse_pdf_by_txt)
-    if pdf_info_dict is None or pdf_info_dict.get('_need_drop', False):
-        logger.warning('parse_pdf_by_txt drop or error, switch to parse_pdf_by_ocr')
-        if len(model_list) == 0:
-            layout_model = kwargs.get('layout_model', None)
-            formula_enable = kwargs.get('formula_enable', None)
-            table_enable = kwargs.get('table_enable', None)
-            infer_res = doc_analyze(
-                dataset,
-                ocr=True,
-                start_page_id=start_page_id,
-                end_page_id=end_page_id,
-                lang=lang,
-                layout_model=layout_model,
-                formula_enable=formula_enable,
-                table_enable=table_enable,
-            )
-            model_list = infer_res.get_infer_res()
-        pdf_info_dict = parse_pdf(parse_pdf_by_ocr)
-        if pdf_info_dict is None:
-            raise Exception('Both parse_pdf_by_txt and parse_pdf_by_ocr failed.')
-        else:
-            pdf_info_dict['_parse_type'] = PARSE_TYPE_OCR
-    else:
-        pdf_info_dict['_parse_type'] = PARSE_TYPE_TXT
-
-    pdf_info_dict['_version_name'] = __version__
-
-    if lang is not None:
-        pdf_info_dict['_lang'] = lang
-
-    return pdf_info_dict

+ 1 - 3
tests/test_cli/test_bench_gpu.py

@@ -1,10 +1,8 @@
-import pytest
+
 import os
 from conf import conf
 import os
 import json
-from magic_pdf.pipe.UNIPipe import UNIPipe
-from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
 from lib import calculate_score
 import shutil
 pdf_res_path = conf.conf["pdf_res_path"]