浏览代码

docs: add [en|zh_cn] docs

xu rui 11 月之前
父节点
当前提交
e4ed6023e4

+ 3 - 1
next_docs/en/user_guide/tutorial.rst

@@ -7,4 +7,6 @@ From the beginning to the end, Show how to using mineru via a minimal project
 .. toctree::
     :maxdepth: 1
 
-    tutorial/output_file_description
+    tutorial/output_file_description
+    tutorial/pipeline
+

+ 185 - 0
next_docs/en/user_guide/tutorial/pipeline.rst

@@ -0,0 +1,185 @@
+
+
+Pipeline
+==========
+
+
+Minimal Example 
+^^^^^^^^^^^^^^^^^
+
+.. code:: python
+
+    import os
+
+    from magic_pdf.data.data_reader_writer import FileBasedDataWriter, FileBasedDataReader
+    from magic_pdf.data.dataset import PymuDocDataset
+    from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
+
+    # args
+    pdf_file_name = "abc.pdf"  # replace with the real pdf path
+    name_without_suff = pdf_file_name.split(".")[0]
+
+    # prepare env
+    local_image_dir, local_md_dir = "output/images", "output"
+    image_dir = str(os.path.basename(local_image_dir))
+
+    os.makedirs(local_image_dir, exist_ok=True)
+
+    image_writer, md_writer = FileBasedDataWriter(local_image_dir), FileBasedDataWriter(
+        local_md_dir
+    )
+    image_dir = str(os.path.basename(local_image_dir))
+
+    # read bytes
+    reader1 = FileBasedDataReader("")
+    pdf_bytes = reader1.read(pdf_file_name)  # read the pdf content
+
+    # proc
+    ## Create Dataset Instance
+    ds = PymuDocDataset(pdf_bytes)
+
+    ds.apply(doc_analyze, ocr=True).pipe_ocr_mode(image_writer).dump_md(md_writer, f"{name_without_suff}.md", image_dir)
+
+Running the above code will result in the following
+
+
+.. code:: bash 
+
+    output/
+    ├── abc.md
+    └── images
+
+
+Excluding the setup of the environment, such as creating directories and importing dependencies, the actual code snippet for converting pdf to markdown is as follows
+
+
+.. code:: python 
+
+    # read bytes
+    reader1 = FileBasedDataReader("")
+    pdf_bytes = reader1.read(pdf_file_name)  # read the pdf content
+
+    # proc
+    ## Create Dataset Instance
+    ds = PymuDocDataset(pdf_bytes)
+
+    ds.apply(doc_analyze, ocr=True).pipe_ocr_mode(image_writer).dump_md(md_writer, f"{name_without_suff}.md", image_dir)
+
+``ds.apply(doc_analyze, ocr=True)`` generates an ``InferenceResult`` object. The ``InferenceResult`` object, when executing the ``pipe_ocr_mode`` method, produces a ``PipeResult`` object.
+The ``PipeResult`` object, upon executing ``dump_md``, generates a ``markdown`` file at the specified location.
+
+
+The pipeline execution process is illustrated in the following diagram
+
+
+.. image:: ../../_static/image/pipeline.drawio.svg 
+
+.. raw:: html
+
+    <br> </br>
+
+Currently, the process is divided into three stages: data, inference, and processing, which correspond to the ``Dataset``, ``InferenceResult``, and ``PipeResult`` entities in the diagram.
+These stages are linked together through methods like ``apply``, ``doc_analyze``, or ``pipe_ocr_mode``
+
+
+.. admonition:: Tip
+    :class: tip
+
+    For more examples on how to use ``Dataset``, ``InferenceResult``, and ``PipeResult``, please refer to :doc:`../quick_start/to_markdown`
+
+    For more detailed information about ``Dataset``, ``InferenceResult``, and ``PipeResult``, please refer to :doc:`../../api/dataset`, :doc:`../../api/model_operators`, :doc:`../../api/pipe_operators`
+
+
+Pipeline Composition
+^^^^^^^^^^^^^^^^^^^^^
+
+.. code:: python 
+
+    class Dataset(ABC):
+        @abstractmethod
+        def apply(self, proc: Callable, *args, **kwargs):
+            """Apply callable method which.
+
+            Args:
+                proc (Callable): invoke proc as follows:
+                    proc(self, *args, **kwargs)
+
+            Returns:
+                Any: return the result generated by proc
+            """
+            pass
+
+    class InferenceResult(InferenceResultBase):
+
+        def apply(self, proc: Callable, *args, **kwargs):
+            """Apply callable method which.
+
+            Args:
+                proc (Callable): invoke proc as follows:
+                    proc(inference_result, *args, **kwargs)
+
+            Returns:
+                Any: return the result generated by proc
+            """
+            return proc(copy.deepcopy(self._infer_res), *args, **kwargs)
+
+        def pipe_ocr_mode(
+            self,
+            imageWriter: DataWriter,
+            start_page_id=0,
+            end_page_id=None,
+            debug_mode=False,
+            lang=None,
+            ) -> PipeResult:
+            pass
+
+    class PipeResult:
+        def apply(self, proc: Callable, *args, **kwargs):
+            """Apply callable method which.
+
+            Args:
+                proc (Callable): invoke proc as follows:
+                    proc(pipeline_result, *args, **kwargs)
+
+            Returns:
+                Any: return the result generated by proc
+            """
+            return proc(copy.deepcopy(self._pipe_res), *args, **kwargs)
+
+
+The ``Dataset``, ``InferenceResult``, and ``PipeResult`` classes all have an ``apply`` method, which can be used to chain different stages of the computation. 
+As shown below, ``MinerU`` provides a set of methods to compose these classes.
+
+
+.. code:: python 
+
+    # proc
+    ## Create Dataset Instance
+    ds = PymuDocDataset(pdf_bytes)
+
+    ds.apply(doc_analyze, ocr=True).pipe_ocr_mode(image_writer).dump_md(md_writer, f"{name_without_suff}.md", image_dir)
+
+
+Users can implement their own functions for chaining as needed. For example, a user could use the ``apply`` method to create a function that counts the number of pages in a ``pdf`` file.
+
+
+.. code:: python
+
+    from magic_pdf.data.data_reader_writer import  FileBasedDataReader
+    from magic_pdf.data.dataset import PymuDocDataset
+
+    # args
+    pdf_file_name = "abc.pdf"  # replace with the real pdf path
+
+    # read bytes
+    reader1 = FileBasedDataReader("")
+    pdf_bytes = reader1.read(pdf_file_name)  # read the pdf content
+
+    # proc
+    ## Create Dataset Instance
+    ds = PymuDocDataset(pdf_bytes)
+
+    def count_page(ds)-> int:
+        return len(ds)
+
+    print("page number: ", ds.apply(count_page)) # will output the page count of `abc.pdf`

+ 10 - 6
next_docs/zh_cn/user_guide/tutorial/pipeline.rst

@@ -49,7 +49,7 @@
     └── images
 
 
-除去初始化环境,如建立目录、导入依赖库等逻辑。真正执行将 `pdf` 转换为 `markdown` 的代码片段如下
+除去初始化环境,如建立目录、导入依赖库等逻辑。真正将 ``pdf`` 转换为 ``markdown`` 的代码片段如下
 
 .. code::
 
@@ -64,15 +64,19 @@
     ds.apply(doc_analyze, ocr=True).pipe_ocr_mode(image_writer).dump_md(md_writer, f"{name_without_suff}.md", image_dir)
 
 
-`ds.apply(doc_analyze, ocr=True)` 会生成 `InferenceResult` 对象。 `InferenceResult` 对象执行 `pipe_ocr_mode` 方法会生成 `PipeResult` 对象。
-`PipeResult` 对象执行 `dump_md` 会在指定位置生成 `markdown` 文件。
+``ds.apply(doc_analyze, ocr=True)`` 会生成 ``InferenceResult`` 对象。 ``InferenceResult`` 对象执行 ``pipe_ocr_mode`` 方法会生成 ``PipeResult`` 对象。
+``PipeResult`` 对象执行 ``dump_md`` 会在指定位置生成 ``markdown`` 文件。
 
 
 pipeline 的执行过程如下图所示
 
 .. image:: ../../_static/image/pipeline.drawio.svg 
 
+.. raw:: html 
 
+    <br> </br>
+
+目前划分出数据、推理、程序处理三个阶段,分别对应着图上的 ``Dataset``, ``InferenceResult``, ``PipeResult`` 这三个实体。通过 ``apply`` , ``doc_analyze`` 或 ``pipe_ocr_mode`` 等方法链接在一起。
 
 
 .. admonition:: Tip
@@ -140,8 +144,8 @@ pipeline 的执行过程如下图所示
             """
             return proc(copy.deepcopy(self._pipe_res), *args, **kwargs)
 
-`Dataset` 、 `InferenceResult` 和 `PipeResult` 类均有 `apply` method。可用于组合不同阶段的运算过程。
-如下所示,`MinerU` 提供一套组合这些类的计算过程。
+``Dataset````InferenceResult`` 和 ``PipeResult`` 类均有 ``apply`` method。可用于组合不同阶段的运算过程。
+如下所示,``MinerU`` 提供一套组合这些类的计算过程。
 
 .. code:: python 
 
@@ -151,7 +155,7 @@ pipeline 的执行过程如下图所示
 
     ds.apply(doc_analyze, ocr=True).pipe_ocr_mode(image_writer).dump_md(md_writer, f"{name_without_suff}.md", image_dir)
 
-用户可以根据的需求,自行实现一些组合用的函数。比如用户通过 `apply` 方法实现一个统计 `pdf` 文件页数的功能。
+用户可以根据的需求,自行实现一些组合用的函数。比如用户通过 ``apply`` 方法实现一个统计 ``pdf`` 文件页数的功能。
 
 .. code:: python