|
|
@@ -1,99 +0,0 @@
|
|
|
-import os
|
|
|
-from Levenshtein import distance
|
|
|
-from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction, corpus_bleu
|
|
|
-from nltk.tokenize import word_tokenize
|
|
|
-import json
|
|
|
-import re
|
|
|
-import scoring
|
|
|
-import argparse
|
|
|
-import nltk
|
|
|
-nltk.download('punkt')
|
|
|
-# 初始化列表来存储编辑距离和BLEU分数
|
|
|
-class Scoring:
|
|
|
- def __init__(self, result_path):
|
|
|
- self.edit_distances = []
|
|
|
- self.bleu_scores = []
|
|
|
- self.sim_scores = []
|
|
|
- self.filenames = []
|
|
|
- self.score_dict = {}
|
|
|
- self.anntion_cnt = 0
|
|
|
- self.fw = open(result_path, "w+")
|
|
|
- def simple_bleu_score(self, candidate, reference):
|
|
|
- candidate_tokens = word_tokenize(candidate)
|
|
|
- reference_tokens = word_tokenize(reference)
|
|
|
- return sentence_bleu([reference_tokens], candidate_tokens, smoothing_function=SmoothingFunction().method1)
|
|
|
-
|
|
|
-
|
|
|
- def preprocess_string(self, s):
|
|
|
- sub_enter = re.sub(r'\n+', '\n', s)
|
|
|
- return re.sub(r' ', ' ', sub_enter)
|
|
|
-
|
|
|
- def calculate_similarity(self, annotion, actual, tool_type):
|
|
|
- class_dict = {}
|
|
|
- edit_distances = []
|
|
|
- bleu_scores = []
|
|
|
- sim_scores = list()
|
|
|
- total_file = 0
|
|
|
- for filename in os.listdir(annotion):
|
|
|
- if filename.endswith('.md') and not filename.startswith('.'): # 忽略隐藏文件
|
|
|
- total_file = total_file + 1
|
|
|
- # 读取A目录中的文件
|
|
|
- with open(os.path.join(annotion, filename), 'r', encoding='utf-8') as file_a:
|
|
|
- content_a = file_a.read()
|
|
|
- self.anntion_cnt = self.anntion_cnt + 1
|
|
|
- filepath_b = os.path.join(actual, filename)
|
|
|
- if os.path.exists(filepath_b):
|
|
|
- with open(filepath_b, 'r', encoding='utf-8') as file_b:
|
|
|
- content_b = file_b.read()
|
|
|
- self.filenames.append(filename)
|
|
|
- # 计算编辑距离
|
|
|
- edit_dist = distance(self.preprocess_string(content_b),self.preprocess_string(content_a)) / max(len(content_a), len(content_b))
|
|
|
- self.edit_distances.append(edit_dist)
|
|
|
- edit_distances.append(edit_dist)
|
|
|
- #计算BLUE分数
|
|
|
- bleu_score = self.simple_bleu_score(content_b, content_a)
|
|
|
- bleu_scores.append(bleu_score)
|
|
|
- self.bleu_scores.append(bleu_score)
|
|
|
- #计算marker分数
|
|
|
- score = scoring.score_text(content_b, content_a)
|
|
|
- sim_scores.append(score)
|
|
|
- self.sim_scores.append(score)
|
|
|
- class_dict[filename] = {"edit_dist": edit_dist, "bleu_score": bleu_score, "sim_score": score}
|
|
|
- self.score_dict[filename] = {"edit_dist": edit_dist, "bleu_score": bleu_score, "sim_score": score}
|
|
|
- else:
|
|
|
- print(f"File {filename} not found in actual directory.")
|
|
|
- # 计算每类平均值
|
|
|
- class_average_edit_distance = sum(edit_distances) / len(edit_distances) if edit_distances else 0
|
|
|
- class_average_bleu_score = sum(bleu_scores) / len(bleu_scores) if bleu_scores else 0
|
|
|
- class_average_sim_score = sum(sim_scores) / len(sim_scores) if sim_scores else 0
|
|
|
- self.fw.write(json.dumps(class_dict, ensure_ascii=False) + "\n")
|
|
|
- ratio = len(class_dict)/total_file
|
|
|
- self.fw.write(f"{tool_type} extract ratio: {ratio}" + "\n")
|
|
|
- self.fw.write(f"{tool_type} Average Levenshtein Distance: {class_average_edit_distance}" + "\n")
|
|
|
- self.fw.write(f"{tool_type} Average BLEU Score: {class_average_bleu_score}" + "\n")
|
|
|
- self.fw.write(f"{tool_type} Average Sim Score: {class_average_sim_score}" + "\n")
|
|
|
-
|
|
|
- print (f"{tool_type} extract ratio: {ratio}")
|
|
|
- print (f"{tool_type} Average Levenshtein Distance: {class_average_edit_distance}")
|
|
|
- print (f"{tool_type} Average BLEU Score: {class_average_bleu_score}")
|
|
|
- print (f"{tool_type} Average Sim Score: {class_average_sim_score}")
|
|
|
- return self.score_dict
|
|
|
-
|
|
|
- def summary_scores(self):
|
|
|
- # 计算整体平均值
|
|
|
- over_all_dict = dict()
|
|
|
- average_edit_distance = sum(self.edit_distances) / len(self.edit_distances) if self.edit_distances else 0
|
|
|
- average_bleu_score = sum(self.bleu_scores) / len(self.bleu_scores) if self.bleu_scores else 0
|
|
|
- average_sim_score = sum(self.sim_scores) / len(self.sim_scores) if self.sim_scores else 0
|
|
|
- over_all_dict["average_edit_distance"] = average_edit_distance
|
|
|
- over_all_dict["average_bleu_score"] = average_bleu_score
|
|
|
- over_all_dict["average_sim_score"] = average_sim_score
|
|
|
- self.fw.write(json.dumps(over_all_dict, ensure_ascii=False) + "\n")
|
|
|
- return over_all_dict
|
|
|
-
|
|
|
- def calculate_similarity_total(self, tool_type, file_types, download_dir):
|
|
|
- for file_type in file_types:
|
|
|
- annotion = os.path.join(download_dir, file_type, "annotations", "cleaned")
|
|
|
- actual = os.path.join(download_dir, file_type, tool_type, "cleaned")
|
|
|
- self.calculate_similarity(annotion, actual, file_type)
|
|
|
-
|