import math import cv2 import numpy as np from scipy.spatial import distance as dist from skimage import measure def transform_preds(coords, center, scale, output_size, rot=0): target_coords = np.zeros(coords.shape) trans = get_affine_transform(center, scale, rot, output_size, inv=1) for p in range(coords.shape[0]): target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans) return target_coords def get_affine_transform( center, scale, rot, output_size, shift=np.array([0, 0], dtype=np.float32), inv=0 ): if not isinstance(scale, np.ndarray) and not isinstance(scale, list): scale = np.array([scale, scale], dtype=np.float32) scale_tmp = scale src_w = scale_tmp[0] dst_w = output_size[0] dst_h = output_size[1] rot_rad = np.pi * rot / 180 src_dir = get_dir([0, src_w * -0.5], rot_rad) dst_dir = np.array([0, dst_w * -0.5], np.float32) src = np.zeros((3, 2), dtype=np.float32) dst = np.zeros((3, 2), dtype=np.float32) src[0, :] = center + scale_tmp * shift src[1, :] = center + src_dir + scale_tmp * shift dst[0, :] = [dst_w * 0.5, dst_h * 0.5] dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5], np.float32) + dst_dir src[2:, :] = get_3rd_point(src[0, :], src[1, :]) dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :]) if inv: trans = cv2.getAffineTransform(np.float32(dst), np.float32(src)) else: trans = cv2.getAffineTransform(np.float32(src), np.float32(dst)) return trans def affine_transform(pt, t): new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32).T new_pt = np.dot(t, new_pt) return new_pt[:2] def get_dir(src_point, rot_rad): sn, cs = np.sin(rot_rad), np.cos(rot_rad) src_result = [0, 0] src_result[0] = src_point[0] * cs - src_point[1] * sn src_result[1] = src_point[0] * sn + src_point[1] * cs return src_result def get_3rd_point(a, b): direct = a - b return b + np.array([-direct[1], direct[0]], dtype=np.float32) def get_table_line(binimg, axis=0, lineW=10): ##获取表格线 ##axis=0 横线 ##axis=1 竖线 labels = measure.label(binimg > 0, connectivity=2) # 8连通区域标记 regions = measure.regionprops(labels) if axis == 1: lineboxes = [ min_area_rect(line.coords) for line in regions if line.bbox[2] - line.bbox[0] > lineW ] else: lineboxes = [ min_area_rect(line.coords) for line in regions if line.bbox[3] - line.bbox[1] > lineW ] return lineboxes def min_area_rect(coords): """ 多边形外接矩形 """ rect = cv2.minAreaRect(coords[:, ::-1]) box = cv2.boxPoints(rect) box = box.reshape((8,)).tolist() box = image_location_sort_box(box) x1, y1, x2, y2, x3, y3, x4, y4 = box degree, w, h, cx, cy = calculate_center_rotate_angle(box) if w < h: xmin = (x1 + x2) / 2 xmax = (x3 + x4) / 2 ymin = (y1 + y2) / 2 ymax = (y3 + y4) / 2 else: xmin = (x1 + x4) / 2 xmax = (x2 + x3) / 2 ymin = (y1 + y4) / 2 ymax = (y2 + y3) / 2 # degree,w,h,cx,cy = solve(box) # x1,y1,x2,y2,x3,y3,x4,y4 = box # return {'degree':degree,'w':w,'h':h,'cx':cx,'cy':cy} return [xmin, ymin, xmax, ymax] def image_location_sort_box(box): x1, y1, x2, y2, x3, y3, x4, y4 = box[:8] pts = (x1, y1), (x2, y2), (x3, y3), (x4, y4) pts = np.array(pts, dtype="float32") (x1, y1), (x2, y2), (x3, y3), (x4, y4) = _order_points(pts) return [x1, y1, x2, y2, x3, y3, x4, y4] def calculate_center_rotate_angle(box): """ 绕 cx,cy点 w,h 旋转 angle 的坐标,能一定程度缓解图片的内部倾斜,但是还是依赖模型稳妥 x = cx-w/2 y = cy-h/2 x1-cx = -w/2*cos(angle) +h/2*sin(angle) y1 -cy= -w/2*sin(angle) -h/2*cos(angle) h(x1-cx) = -wh/2*cos(angle) +hh/2*sin(angle) w(y1 -cy)= -ww/2*sin(angle) -hw/2*cos(angle) (hh+ww)/2sin(angle) = h(x1-cx)-w(y1 -cy) """ x1, y1, x2, y2, x3, y3, x4, y4 = box[:8] cx = (x1 + x3 + x2 + x4) / 4.0 cy = (y1 + y3 + y4 + y2) / 4.0 w = ( np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) + np.sqrt((x3 - x4) ** 2 + (y3 - y4) ** 2) ) / 2 h = ( np.sqrt((x2 - x3) ** 2 + (y2 - y3) ** 2) + np.sqrt((x1 - x4) ** 2 + (y1 - y4) ** 2) ) / 2 # x = cx-w/2 # y = cy-h/2 sinA = (h * (x1 - cx) - w * (y1 - cy)) * 1.0 / (h * h + w * w) * 2 angle = np.arcsin(sinA) return angle, w, h, cx, cy def _order_points(pts): # 根据x坐标对点进行排序 """ --------------------- 本项目中是为了排序后得到[(xmin,ymin),(xmax,ymin),(xmax,ymax),(xmin,ymax)] 作者:Tong_T 来源:CSDN 原文:https://blog.csdn.net/Tong_T/article/details/81907132 版权声明:本文为博主原创文章,转载请附上博文链接! """ x_sorted = pts[np.argsort(pts[:, 0]), :] left_most = x_sorted[:2, :] right_most = x_sorted[2:, :] left_most = left_most[np.argsort(left_most[:, 1]), :] (tl, bl) = left_most distance = dist.cdist(tl[np.newaxis], right_most, "euclidean")[0] (br, tr) = right_most[np.argsort(distance)[::-1], :] return np.array([tl, tr, br, bl], dtype="float32") def sqrt(p1, p2): return np.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2) def adjust_lines(lines, alph=50, angle=50): lines_n = len(lines) new_lines = [] for i in range(lines_n): x1, y1, x2, y2 = lines[i] cx1, cy1 = (x1 + x2) / 2, (y1 + y2) / 2 for j in range(lines_n): if i != j: x3, y3, x4, y4 = lines[j] cx2, cy2 = (x3 + x4) / 2, (y3 + y4) / 2 if (x3 < cx1 < x4 or y3 < cy1 < y4) or ( x1 < cx2 < x2 or y1 < cy2 < y2 ): # 判断两个横线在y方向的投影重不重合 continue else: r = sqrt((x1, y1), (x3, y3)) k = abs((y3 - y1) / (x3 - x1 + 1e-10)) a = math.atan(k) * 180 / math.pi if r < alph and a < angle: new_lines.append((x1, y1, x3, y3)) r = sqrt((x1, y1), (x4, y4)) k = abs((y4 - y1) / (x4 - x1 + 1e-10)) a = math.atan(k) * 180 / math.pi if r < alph and a < angle: new_lines.append((x1, y1, x4, y4)) r = sqrt((x2, y2), (x3, y3)) k = abs((y3 - y2) / (x3 - x2 + 1e-10)) a = math.atan(k) * 180 / math.pi if r < alph and a < angle: new_lines.append((x2, y2, x3, y3)) r = sqrt((x2, y2), (x4, y4)) k = abs((y4 - y2) / (x4 - x2 + 1e-10)) a = math.atan(k) * 180 / math.pi if r < alph and a < angle: new_lines.append((x2, y2, x4, y4)) return new_lines def final_adjust_lines(rowboxes, colboxes): nrow = len(rowboxes) ncol = len(colboxes) for i in range(nrow): for j in range(ncol): rowboxes[i] = line_to_line(rowboxes[i], colboxes[j], alpha=20, angle=30) colboxes[j] = line_to_line(colboxes[j], rowboxes[i], alpha=20, angle=30) return rowboxes, colboxes def draw_lines(im, bboxes, color=(0, 0, 0), lineW=3): """ boxes: bounding boxes """ tmp = np.copy(im) c = color h, w = im.shape[:2] for box in bboxes: x1, y1, x2, y2 = box[:4] cv2.line( tmp, (int(x1), int(y1)), (int(x2), int(y2)), c, lineW, lineType=cv2.LINE_AA ) return tmp def line_to_line(points1, points2, alpha=10, angle=30): """ 线段之间的距离 """ x1, y1, x2, y2 = points1 ox1, oy1, ox2, oy2 = points2 xy = np.array([(x1, y1), (x2, y2)], dtype="float32") A1, B1, C1 = fit_line(xy) oxy = np.array([(ox1, oy1), (ox2, oy2)], dtype="float32") A2, B2, C2 = fit_line(oxy) flag1 = point_line_cor(np.array([x1, y1], dtype="float32"), A2, B2, C2) flag2 = point_line_cor(np.array([x2, y2], dtype="float32"), A2, B2, C2) if (flag1 > 0 and flag2 > 0) or (flag1 < 0 and flag2 < 0): # 横线或者竖线在竖线或者横线的同一侧 if (A1 * B2 - A2 * B1) != 0: x = (B1 * C2 - B2 * C1) / (A1 * B2 - A2 * B1) y = (A2 * C1 - A1 * C2) / (A1 * B2 - A2 * B1) # x, y = round(x, 2), round(y, 2) p = (x, y) # 横线与竖线的交点 r0 = sqrt(p, (x1, y1)) r1 = sqrt(p, (x2, y2)) if min(r0, r1) < alpha: # 若交点与线起点或者终点的距离小于alpha,则延长线到交点 if r0 < r1: k = abs((y2 - p[1]) / (x2 - p[0] + 1e-10)) a = math.atan(k) * 180 / math.pi if a < angle or abs(90 - a) < angle: points1 = np.array([p[0], p[1], x2, y2], dtype="float32") else: k = abs((y1 - p[1]) / (x1 - p[0] + 1e-10)) a = math.atan(k) * 180 / math.pi if a < angle or abs(90 - a) < angle: points1 = np.array([x1, y1, p[0], p[1]], dtype="float32") return points1 def min_area_rect_box( regions, flag=True, W=0, H=0, filtersmall=False, adjust_box=False ): """ 多边形外接矩形 """ boxes = [] for region in regions: if region.bbox_area > H * W * 3 / 4: # 过滤大的单元格 continue rect = cv2.minAreaRect(region.coords[:, ::-1]) box = cv2.boxPoints(rect) box = box.reshape((8,)).tolist() box = image_location_sort_box(box) x1, y1, x2, y2, x3, y3, x4, y4 = box angle, w, h, cx, cy = calculate_center_rotate_angle(box) # if adjustBox: # x1, y1, x2, y2, x3, y3, x4, y4 = xy_rotate_box(cx, cy, w + 5, h + 5, angle=0, degree=None) # x1, x4 = max(x1, 0), max(x4, 0) # y1, y2 = max(y1, 0), max(y2, 0) # if w > 32 and h > 32 and flag: # if abs(angle / np.pi * 180) < 20: # if filtersmall and (w < 10 or h < 10): # continue # boxes.append([x1, y1, x2, y2, x3, y3, x4, y4]) # else: if w * h < 0.5 * W * H: if filtersmall and ( w < 15 or h < 15 ): # or w / h > 30 or h / w > 30): # 过滤小的单元格 continue boxes.append([x1, y1, x2, y2, x3, y3, x4, y4]) return boxes def point_line_cor(p, A, B, C): ##判断点与线之间的位置关系 # 一般式直线方程(Ax+By+c)=0 x, y = p r = A * x + B * y + C return r def fit_line(p): """A = Y2 - Y1 B = X1 - X2 C = X2*Y1 - X1*Y2 AX+BY+C=0 直线一般方程 """ x1, y1 = p[0] x2, y2 = p[1] A = y2 - y1 B = x1 - x2 C = x2 * y1 - x1 * y2 return A, B, C