""" 包含两个MagicModel类中重复使用的方法和逻辑 """ from typing import List, Dict, Any, Callable from mineru.utils.boxbase import bbox_distance, is_in def reduct_overlap(bboxes: List[Dict[str, Any]]) -> List[Dict[str, Any]]: """ 去除重叠的bbox,保留不被其他bbox包含的bbox Args: bboxes: 包含bbox信息的字典列表 Returns: 去重后的bbox列表 """ N = len(bboxes) keep = [True] * N for i in range(N): for j in range(N): if i == j: continue if is_in(bboxes[i]['bbox'], bboxes[j]['bbox']): keep[i] = False return [bboxes[i] for i in range(N) if keep[i]] def tie_up_category_by_distance_v3( get_subjects_func: Callable, get_objects_func: Callable, extract_subject_func: Callable = None, extract_object_func: Callable = None ): """ 通用的类别关联方法,用于将主体对象与客体对象进行关联 参数: get_subjects_func: 函数,提取主体对象 get_objects_func: 函数,提取客体对象 extract_subject_func: 函数,自定义提取主体属性(默认使用bbox和其他属性) extract_object_func: 函数,自定义提取客体属性(默认使用bbox和其他属性) 返回: 关联后的对象列表 """ subjects = get_subjects_func() objects = get_objects_func() # 如果没有提供自定义提取函数,使用默认函数 if extract_subject_func is None: extract_subject_func = lambda x: x if extract_object_func is None: extract_object_func = lambda x: x ret = [] N, M = len(subjects), len(objects) subjects.sort(key=lambda x: x["bbox"][0] ** 2 + x["bbox"][1] ** 2) objects.sort(key=lambda x: x["bbox"][0] ** 2 + x["bbox"][1] ** 2) OBJ_IDX_OFFSET = 10000 SUB_BIT_KIND, OBJ_BIT_KIND = 0, 1 all_boxes_with_idx = [(i, SUB_BIT_KIND, sub["bbox"][0], sub["bbox"][1]) for i, sub in enumerate(subjects)] + [ (i + OBJ_IDX_OFFSET, OBJ_BIT_KIND, obj["bbox"][0], obj["bbox"][1]) for i, obj in enumerate(objects) ] seen_idx = set() seen_sub_idx = set() while N > len(seen_sub_idx): candidates = [] for idx, kind, x0, y0 in all_boxes_with_idx: if idx in seen_idx: continue candidates.append((idx, kind, x0, y0)) if len(candidates) == 0: break left_x = min([v[2] for v in candidates]) top_y = min([v[3] for v in candidates]) candidates.sort(key=lambda x: (x[2] - left_x) ** 2 + (x[3] - top_y) ** 2) fst_idx, fst_kind, left_x, top_y = candidates[0] fst_bbox = subjects[fst_idx]['bbox'] if fst_kind == SUB_BIT_KIND else objects[fst_idx - OBJ_IDX_OFFSET]['bbox'] candidates.sort( key=lambda x: bbox_distance(fst_bbox, subjects[x[0]]['bbox']) if x[1] == SUB_BIT_KIND else bbox_distance( fst_bbox, objects[x[0] - OBJ_IDX_OFFSET]['bbox'])) nxt = None for i in range(1, len(candidates)): if candidates[i][1] ^ fst_kind == 1: nxt = candidates[i] break if nxt is None: break if fst_kind == SUB_BIT_KIND: sub_idx, obj_idx = fst_idx, nxt[0] - OBJ_IDX_OFFSET else: sub_idx, obj_idx = nxt[0], fst_idx - OBJ_IDX_OFFSET pair_dis = bbox_distance(subjects[sub_idx]["bbox"], objects[obj_idx]["bbox"]) nearest_dis = float("inf") for i in range(N): # 取消原先算法中 1对1 匹配的偏置 # if i in seen_idx or i == sub_idx:continue nearest_dis = min(nearest_dis, bbox_distance(subjects[i]["bbox"], objects[obj_idx]["bbox"])) if pair_dis >= 3 * nearest_dis: seen_idx.add(sub_idx) continue seen_idx.add(sub_idx) seen_idx.add(obj_idx + OBJ_IDX_OFFSET) seen_sub_idx.add(sub_idx) ret.append( { "sub_bbox": extract_subject_func(subjects[sub_idx]), "obj_bboxes": [extract_object_func(objects[obj_idx])], "sub_idx": sub_idx, } ) for i in range(len(objects)): j = i + OBJ_IDX_OFFSET if j in seen_idx: continue seen_idx.add(j) nearest_dis, nearest_sub_idx = float("inf"), -1 for k in range(len(subjects)): dis = bbox_distance(objects[i]["bbox"], subjects[k]["bbox"]) if dis < nearest_dis: nearest_dis = dis nearest_sub_idx = k for k in range(len(subjects)): if k != nearest_sub_idx: continue if k in seen_sub_idx: for kk in range(len(ret)): if ret[kk]["sub_idx"] == k: ret[kk]["obj_bboxes"].append(extract_object_func(objects[i])) break else: ret.append( { "sub_bbox": extract_subject_func(subjects[k]), "obj_bboxes": [extract_object_func(objects[i])], "sub_idx": k, } ) seen_sub_idx.add(k) seen_idx.add(k) for i in range(len(subjects)): if i in seen_sub_idx: continue ret.append( { "sub_bbox": extract_subject_func(subjects[i]), "obj_bboxes": [], "sub_idx": i, } ) return ret