Api Usage =========== PDF ---- Local File Example ^^^^^^^^^^^^^^^^^^ .. code:: python import os from magic_pdf.data.data_reader_writer import FileBasedDataWriter, FileBasedDataReader from magic_pdf.data.dataset import PymuDocDataset from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze from magic_pdf.config.enums import SupportedPdfParseMethod # args pdf_file_name = "abc.pdf" # replace with the real pdf path name_without_suff = pdf_file_name.split(".")[0] # prepare env local_image_dir, local_md_dir = "output/images", "output" image_dir = str(os.path.basename(local_image_dir)) os.makedirs(local_image_dir, exist_ok=True) image_writer, md_writer = FileBasedDataWriter(local_image_dir), FileBasedDataWriter( local_md_dir ) # read bytes reader1 = FileBasedDataReader("") pdf_bytes = reader1.read(pdf_file_name) # read the pdf content # proc ## Create Dataset Instance ds = PymuDocDataset(pdf_bytes) ## inference if ds.classify() == SupportedPdfParseMethod.OCR: infer_result = ds.apply(doc_analyze, ocr=True) ## pipeline pipe_result = infer_result.pipe_ocr_mode(image_writer) else: infer_result = ds.apply(doc_analyze, ocr=False) ## pipeline pipe_result = infer_result.pipe_txt_mode(image_writer) ### draw model result on each page infer_result.draw_model(os.path.join(local_md_dir, f"{name_without_suff}_model.pdf")) ### get model inference result model_inference_result = infer_result.get_infer_res() ### draw layout result on each page pipe_result.draw_layout(os.path.join(local_md_dir, f"{name_without_suff}_layout.pdf")) ### draw spans result on each page pipe_result.draw_span(os.path.join(local_md_dir, f"{name_without_suff}_spans.pdf")) ### get markdown content md_content = pipe_result.get_markdown(image_dir) ### dump markdown pipe_result.dump_md(md_writer, f"{name_without_suff}.md", image_dir) ### get content list content content_list_content = pipe_result.get_content_list(image_dir) ### dump content list pipe_result.dump_content_list(md_writer, f"{name_without_suff}_content_list.json", image_dir) ### get middle json middle_json_content = pipe_result.get_middle_json() ### dump middle json pipe_result.dump_middle_json(md_writer, f'{name_without_suff}_middle.json') S3 File Example ^^^^^^^^^^^^^^^^ .. code:: python import os from magic_pdf.data.data_reader_writer import S3DataReader, S3DataWriter from magic_pdf.data.dataset import PymuDocDataset from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze from magic_pdf.config.enums import SupportedPdfParseMethod bucket_name = "{Your S3 Bucket Name}" # replace with real bucket name ak = "{Your S3 access key}" # replace with real s3 access key sk = "{Your S3 secret key}" # replace with real s3 secret key endpoint_url = "{Your S3 endpoint_url}" # replace with real s3 endpoint_url reader = S3DataReader('unittest/tmp/', bucket_name, ak, sk, endpoint_url) # replace `unittest/tmp` with the real s3 prefix writer = S3DataWriter('unittest/tmp', bucket_name, ak, sk, endpoint_url) image_writer = S3DataWriter('unittest/tmp/images', bucket_name, ak, sk, endpoint_url) md_writer = S3DataWriter('unittest/tmp', bucket_name, ak, sk, endpoint_url) local_image_dir, local_md_dir = "output/images", "output" image_dir = str(os.path.basename(local_image_dir)) # args pdf_file_name = ( f"s3://{bucket_name}/unittest/tmp/bug5-11.pdf" # replace with the real s3 path ) # prepare env local_dir = "output" name_without_suff = os.path.basename(pdf_file_name).split(".")[0] # read bytes pdf_bytes = reader.read(pdf_file_name) # read the pdf content # proc ## Create Dataset Instance ds = PymuDocDataset(pdf_bytes) ## inference if ds.classify() == SupportedPdfParseMethod.OCR: infer_result = ds.apply(doc_analyze, ocr=True) ## pipeline pipe_result = infer_result.pipe_ocr_mode(image_writer) else: infer_result = ds.apply(doc_analyze, ocr=False) ## pipeline pipe_result = infer_result.pipe_txt_mode(image_writer) ### draw model result on each page infer_result.draw_model(os.path.join(local_md_dir, f"{name_without_suff}_model.pdf")) ### get model inference result model_inference_result = infer_result.get_infer_res() ### draw layout result on each page pipe_result.draw_layout(os.path.join(local_md_dir, f"{name_without_suff}_layout.pdf")) ### draw spans result on each page pipe_result.draw_span(os.path.join(local_md_dir, f"{name_without_suff}_spans.pdf")) ### dump markdown pipe_result.dump_md(md_writer, f"{name_without_suff}.md", image_dir) ### dump content list pipe_result.dump_content_list(md_writer, f"{name_without_suff}_content_list.json", image_dir) ### get markdown content md_content = pipe_result.get_markdown(image_dir) ### get content list content content_list_content = pipe_result.get_content_list(image_dir) ### get middle json middle_json_content = pipe_result.get_middle_json() ### dump middle json pipe_result.dump_middle_json(md_writer, f'{name_without_suff}_middle.json') MS-Office ---------- .. code:: python import os from magic_pdf.data.data_reader_writer import FileBasedDataWriter, FileBasedDataReader from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze from magic_pdf.data.read_api import read_local_office # prepare env local_image_dir, local_md_dir = "output/images", "output" image_dir = str(os.path.basename(local_image_dir)) os.makedirs(local_image_dir, exist_ok=True) image_writer, md_writer = FileBasedDataWriter(local_image_dir), FileBasedDataWriter( local_md_dir ) # proc ## Create Dataset Instance input_file = "some_ppt.ppt" # replace with real ms-office file input_file_name = input_file.split(".")[0] ds = read_local_office(input_file)[0] ds.apply(doc_analyze, ocr=True).pipe_txt_mode(image_writer).dump_md( md_writer, f"{input_file_name}.md", image_dir ) This code snippet can be used to manipulate **ppt**, **pptx**, **doc**, **docx** file Image --------- Single Image File ^^^^^^^^^^^^^^^^^^^ .. code:: python import os from magic_pdf.data.data_reader_writer import FileBasedDataWriter from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze from magic_pdf.data.read_api import read_local_images # prepare env local_image_dir, local_md_dir = "output/images", "output" image_dir = str(os.path.basename(local_image_dir)) os.makedirs(local_image_dir, exist_ok=True) image_writer, md_writer = FileBasedDataWriter(local_image_dir), FileBasedDataWriter( local_md_dir ) # proc ## Create Dataset Instance input_file = "some_image.jpg" # replace with real image file input_file_name = input_file.split(".")[0] ds = read_local_images(input_file)[0] ds.apply(doc_analyze, ocr=True).pipe_ocr_mode(image_writer).dump_md( md_writer, f"{input_file_name}.md", image_dir ) Directory That Contains Images ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. code:: python import os from magic_pdf.data.data_reader_writer import FileBasedDataWriter from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze from magic_pdf.data.read_api import read_local_images # prepare env local_image_dir, local_md_dir = "output/images", "output" image_dir = str(os.path.basename(local_image_dir)) os.makedirs(local_image_dir, exist_ok=True) image_writer, md_writer = FileBasedDataWriter(local_image_dir), FileBasedDataWriter( local_md_dir ) # proc ## Create Dataset Instance input_directory = "some_image_dir/" # replace with real directory that contains images dss = read_local_images(input_directory, suffixes=['.png', '.jpg']) count = 0 for ds in dss: ds.apply(doc_analyze, ocr=True).pipe_ocr_mode(image_writer).dump_md( md_writer, f"{count}.md", image_dir ) count += 1 Check :doc:`../data/data_reader_writer` for more [reader | writer] examples and check :doc:`../../api/pipe_operators` or :doc:`../../api/model_operators` for api details