import cv2 from loguru import logger from tqdm import tqdm from collections import defaultdict import numpy as np from .model_init import AtomModelSingleton from ...utils.model_utils import crop_img, get_res_list_from_layout_res, get_coords_and_area from ...utils.ocr_utils import get_adjusted_mfdetrec_res, get_ocr_result_list YOLO_LAYOUT_BASE_BATCH_SIZE = 1 MFD_BASE_BATCH_SIZE = 1 MFR_BASE_BATCH_SIZE = 16 class BatchAnalyze: def __init__(self, model_manager, batch_ratio: int, formula_enable, table_enable, enable_ocr_det_batch: bool = False): self.batch_ratio = batch_ratio self.formula_enable = formula_enable self.table_enable = table_enable self.model_manager = model_manager self.enable_ocr_det_batch = enable_ocr_det_batch def __call__(self, images_with_extra_info: list) -> list: if len(images_with_extra_info) == 0: return [] images_layout_res = [] self.model = self.model_manager.get_model( lang=None, formula_enable=self.formula_enable, table_enable=self.table_enable, ) atom_model_manager = AtomModelSingleton() images = [image for image, _, _ in images_with_extra_info] # doclayout_yolo layout_images = [] for image_index, image in enumerate(images): layout_images.append(image) images_layout_res += self.model.layout_model.batch_predict( layout_images, YOLO_LAYOUT_BASE_BATCH_SIZE ) if self.formula_enable: # 公式检测 images_mfd_res = self.model.mfd_model.batch_predict( images, MFD_BASE_BATCH_SIZE ) # 公式识别 images_formula_list = self.model.mfr_model.batch_predict( images_mfd_res, images, batch_size=self.batch_ratio * MFR_BASE_BATCH_SIZE, ) mfr_count = 0 for image_index in range(len(images)): images_layout_res[image_index] += images_formula_list[image_index] mfr_count += len(images_formula_list[image_index]) # 清理显存 # clean_vram(self.model.device, vram_threshold=8) ocr_res_list_all_page = [] table_res_list_all_page = [] for index in range(len(images)): _, ocr_enable, _lang = images_with_extra_info[index] layout_res = images_layout_res[index] pil_img = images[index] ocr_res_list, table_res_list, single_page_mfdetrec_res = ( get_res_list_from_layout_res(layout_res) ) ocr_res_list_all_page.append({'ocr_res_list':ocr_res_list, 'lang':_lang, 'ocr_enable':ocr_enable, 'pil_img':pil_img, 'single_page_mfdetrec_res':single_page_mfdetrec_res, 'layout_res':layout_res, }) for table_res in table_res_list: table_img, _ = crop_img(table_res, pil_img) table_res_list_all_page.append({'table_res':table_res, 'lang':_lang, 'table_img':table_img, }) # OCR检测处理 if self.enable_ocr_det_batch: # 批处理模式 - 按语言和分辨率分组 # 收集所有需要OCR检测的裁剪图像 all_cropped_images_info = [] for ocr_res_list_dict in ocr_res_list_all_page: _lang = ocr_res_list_dict['lang'] for res in ocr_res_list_dict['ocr_res_list']: new_image, useful_list = crop_img( res, ocr_res_list_dict['pil_img'], crop_paste_x=50, crop_paste_y=50 ) adjusted_mfdetrec_res = get_adjusted_mfdetrec_res( ocr_res_list_dict['single_page_mfdetrec_res'], useful_list ) # BGR转换 new_image = cv2.cvtColor(np.asarray(new_image), cv2.COLOR_RGB2BGR) all_cropped_images_info.append(( new_image, useful_list, ocr_res_list_dict, res, adjusted_mfdetrec_res, _lang )) # 按语言分组 lang_groups = defaultdict(list) for crop_info in all_cropped_images_info: lang = crop_info[5] lang_groups[lang].append(crop_info) # 对每种语言按分辨率分组并批处理 for lang, lang_crop_list in lang_groups.items(): if not lang_crop_list: continue # logger.info(f"Processing OCR detection for language {lang} with {len(lang_crop_list)} images") # 获取OCR模型 ocr_model = atom_model_manager.get_atom_model( atom_model_name='ocr', det_db_box_thresh=0.3, lang=lang ) # 按分辨率分组并同时完成padding resolution_groups = defaultdict(list) for crop_info in lang_crop_list: cropped_img = crop_info[0] h, w = cropped_img.shape[:2] # 使用更大的分组容差,减少分组数量 # 将尺寸标准化到32的倍数 normalized_h = ((h + 32) // 32) * 32 # 向上取整到32的倍数 normalized_w = ((w + 32) // 32) * 32 group_key = (normalized_h, normalized_w) resolution_groups[group_key].append(crop_info) # 对每个分辨率组进行批处理 for group_key, group_crops in tqdm(resolution_groups.items(), desc=f"OCR-det {lang}"): raw_images = [crop_info[0] for crop_info in group_crops] # 计算目标尺寸(组内最大尺寸,向上取整到32的倍数) max_h = max(img.shape[0] for img in raw_images) max_w = max(img.shape[1] for img in raw_images) target_h = ((max_h + 32 - 1) // 32) * 32 target_w = ((max_w + 32 - 1) // 32) * 32 # 对所有图像进行padding到统一尺寸 batch_images = [] for img in raw_images: h, w = img.shape[:2] # 创建目标尺寸的白色背景 padded_img = np.ones((target_h, target_w, 3), dtype=np.uint8) * 255 # 将原图像粘贴到左上角 padded_img[:h, :w] = img batch_images.append(padded_img) # 批处理检测 batch_size = min(len(batch_images), self.batch_ratio * 16) # 增加批处理大小 # logger.debug(f"OCR-det batch: {batch_size} images, target size: {target_h}x{target_w}") batch_results = ocr_model.text_detector.batch_predict(batch_images, batch_size) # 处理批处理结果 for i, (crop_info, (dt_boxes, elapse)) in enumerate(zip(group_crops, batch_results)): new_image, useful_list, ocr_res_list_dict, res, adjusted_mfdetrec_res, _lang = crop_info if dt_boxes is not None: # 构造OCR结果格式 - 每个box应该是4个点的列表 ocr_res = [box.tolist() for box in dt_boxes] if ocr_res: ocr_result_list = get_ocr_result_list( ocr_res, useful_list, ocr_res_list_dict['ocr_enable'], new_image, _lang ) if res["category_id"] == 3: # ocr_result_list中所有bbox的面积之和 ocr_res_area = sum( get_coords_and_area(ocr_res_item)[4] for ocr_res_item in ocr_result_list if 'poly' in ocr_res_item) # 求ocr_res_area和res的面积的比值 res_area = get_coords_and_area(res)[4] if res_area > 0: ratio = ocr_res_area / res_area if ratio > 0.25: res["category_id"] = 1 else: continue ocr_res_list_dict['layout_res'].extend(ocr_result_list) else: # 原始单张处理模式 for ocr_res_list_dict in tqdm(ocr_res_list_all_page, desc="OCR-det Predict"): # Process each area that requires OCR processing _lang = ocr_res_list_dict['lang'] # Get OCR results for this language's images ocr_model = atom_model_manager.get_atom_model( atom_model_name='ocr', ocr_show_log=False, det_db_box_thresh=0.3, lang=_lang ) for res in ocr_res_list_dict['ocr_res_list']: new_image, useful_list = crop_img( res, ocr_res_list_dict['pil_img'], crop_paste_x=50, crop_paste_y=50 ) adjusted_mfdetrec_res = get_adjusted_mfdetrec_res( ocr_res_list_dict['single_page_mfdetrec_res'], useful_list ) # OCR-det new_image = cv2.cvtColor(np.asarray(new_image), cv2.COLOR_RGB2BGR) ocr_res = ocr_model.ocr( new_image, mfd_res=adjusted_mfdetrec_res, rec=False )[0] # Integration results if ocr_res: ocr_result_list = get_ocr_result_list(ocr_res, useful_list, ocr_res_list_dict['ocr_enable'], new_image, _lang) if res["category_id"] == 3: # ocr_result_list中所有bbox的面积之和 ocr_res_area = sum( get_coords_and_area(ocr_res_item)[4] for ocr_res_item in ocr_result_list if 'poly' in ocr_res_item) # 求ocr_res_area和res的面积的比值 res_area = get_coords_and_area(res)[4] if res_area > 0: ratio = ocr_res_area / res_area if ratio > 0.25: res["category_id"] = 1 else: continue ocr_res_list_dict['layout_res'].extend(ocr_result_list) # 表格识别 table recognition if self.table_enable: for table_res_dict in tqdm(table_res_list_all_page, desc="Table Predict"): _lang = table_res_dict['lang'] table_model = atom_model_manager.get_atom_model( atom_model_name='table', device='cpu', lang=_lang, table_sub_model_name='slanet_plus' ) html_code, table_cell_bboxes, logic_points, elapse = table_model.predict(table_res_dict['table_img']) # 判断是否返回正常 if html_code: expected_ending = html_code.strip().endswith( '' ) or html_code.strip().endswith('') if expected_ending: table_res_dict['table_res']['html'] = html_code else: logger.warning( 'table recognition processing fails, not found expected HTML table end' ) else: logger.warning( 'table recognition processing fails, not get html return' ) # Create dictionaries to store items by language need_ocr_lists_by_lang = {} # Dict of lists for each language img_crop_lists_by_lang = {} # Dict of lists for each language for layout_res in images_layout_res: for layout_res_item in layout_res: if layout_res_item['category_id'] in [15]: if 'np_img' in layout_res_item and 'lang' in layout_res_item: lang = layout_res_item['lang'] # Initialize lists for this language if not exist if lang not in need_ocr_lists_by_lang: need_ocr_lists_by_lang[lang] = [] img_crop_lists_by_lang[lang] = [] # Add to the appropriate language-specific lists need_ocr_lists_by_lang[lang].append(layout_res_item) img_crop_lists_by_lang[lang].append(layout_res_item['np_img']) # Remove the fields after adding to lists layout_res_item.pop('np_img') layout_res_item.pop('lang') if len(img_crop_lists_by_lang) > 0: # Process OCR by language total_processed = 0 # Process each language separately for lang, img_crop_list in img_crop_lists_by_lang.items(): if len(img_crop_list) > 0: # Get OCR results for this language's images ocr_model = atom_model_manager.get_atom_model( atom_model_name='ocr', det_db_box_thresh=0.3, lang=lang ) ocr_res_list = ocr_model.ocr(img_crop_list, det=False, tqdm_enable=True)[0] # Verify we have matching counts assert len(ocr_res_list) == len( need_ocr_lists_by_lang[lang]), f'ocr_res_list: {len(ocr_res_list)}, need_ocr_list: {len(need_ocr_lists_by_lang[lang])} for lang: {lang}' # Process OCR results for this language for index, layout_res_item in enumerate(need_ocr_lists_by_lang[lang]): ocr_text, ocr_score = ocr_res_list[index] layout_res_item['text'] = ocr_text layout_res_item['score'] = float(f"{ocr_score:.3f}") total_processed += len(img_crop_list) return images_layout_res