import os
import html
import cv2
import numpy as np
from loguru import logger
from rapid_table import RapidTable, RapidTableInput
from mineru.utils.enum_class import ModelPath
from mineru.utils.models_download_utils import auto_download_and_get_model_root_path
def escape_html(input_string):
"""Escape HTML Entities."""
return html.escape(input_string)
class RapidTableModel(object):
def __init__(self, ocr_engine):
slanet_plus_model_path = os.path.join(auto_download_and_get_model_root_path(ModelPath.slanet_plus), ModelPath.slanet_plus)
input_args = RapidTableInput(model_type='slanet_plus', model_path=slanet_plus_model_path)
self.table_model = RapidTable(input_args)
self.ocr_engine = ocr_engine
def predict(self, image):
bgr_image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
# First check the overall image aspect ratio (height/width)
img_height, img_width = bgr_image.shape[:2]
img_aspect_ratio = img_height / img_width if img_width > 0 else 1.0
img_is_portrait = img_aspect_ratio > 1.2
if img_is_portrait:
det_res = self.ocr_engine.ocr(bgr_image, rec=False)[0]
# Check if table is rotated by analyzing text box aspect ratios
is_rotated = False
if det_res:
vertical_count = 0
for box_ocr_res in det_res:
p1, p2, p3, p4 = box_ocr_res
# Calculate width and height
width = p3[0] - p1[0]
height = p3[1] - p1[1]
aspect_ratio = width / height if height > 0 else 1.0
# Count vertical vs horizontal text boxes
if aspect_ratio < 0.8: # Taller than wide - vertical text
vertical_count += 1
# elif aspect_ratio > 1.2: # Wider than tall - horizontal text
# horizontal_count += 1
# If we have more vertical text boxes than horizontal ones,
# and vertical ones are significant, table might be rotated
if vertical_count >= len(det_res) * 0.3:
is_rotated = True
# logger.debug(f"Text orientation analysis: vertical={vertical_count}, det_res={len(det_res)}, rotated={is_rotated}")
# Rotate image if necessary
if is_rotated:
# logger.debug("Table appears to be in portrait orientation, rotating 90 degrees clockwise")
image = cv2.rotate(np.asarray(image), cv2.ROTATE_90_CLOCKWISE)
bgr_image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# Continue with OCR on potentially rotated image
ocr_result = self.ocr_engine.ocr(bgr_image)[0]
if ocr_result:
ocr_result = [[item[0], escape_html(item[1][0]), item[1][1]] for item in ocr_result if
len(item) == 2 and isinstance(item[1], tuple)]
else:
ocr_result = None
if ocr_result:
try:
table_results = self.table_model(np.asarray(image), ocr_result)
html_code = table_results.pred_html
table_cell_bboxes = table_results.cell_bboxes
logic_points = table_results.logic_points
elapse = table_results.elapse
return html_code, table_cell_bboxes, logic_points, elapse
except Exception as e:
logger.exception(e)
return None, None, None, None