from PIL import Image import cv2 import numpy as np import math import time import torch from tqdm import tqdm from ...pytorchocr.base_ocr_v20 import BaseOCRV20 from . import pytorchocr_utility as utility from ...pytorchocr.postprocess import build_post_process from ...pytorchocr.modeling.backbones.rec_hgnet import ConvBNAct class TextRecognizer(BaseOCRV20): def __init__(self, args, **kwargs): self.device = args.device self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")] self.character_type = args.rec_char_type self.rec_batch_num = args.rec_batch_num self.rec_algorithm = args.rec_algorithm self.max_text_length = args.max_text_length postprocess_params = { 'name': 'CTCLabelDecode', "character_type": args.rec_char_type, "character_dict_path": args.rec_char_dict_path, "use_space_char": args.use_space_char } if self.rec_algorithm == "SRN": postprocess_params = { 'name': 'SRNLabelDecode', "character_type": args.rec_char_type, "character_dict_path": args.rec_char_dict_path, "use_space_char": args.use_space_char } elif self.rec_algorithm == "RARE": postprocess_params = { 'name': 'AttnLabelDecode', "character_type": args.rec_char_type, "character_dict_path": args.rec_char_dict_path, "use_space_char": args.use_space_char } elif self.rec_algorithm == 'NRTR': postprocess_params = { 'name': 'NRTRLabelDecode', "character_dict_path": args.rec_char_dict_path, "use_space_char": args.use_space_char } elif self.rec_algorithm == "SAR": postprocess_params = { 'name': 'SARLabelDecode', "character_dict_path": args.rec_char_dict_path, "use_space_char": args.use_space_char } elif self.rec_algorithm == 'ViTSTR': postprocess_params = { 'name': 'ViTSTRLabelDecode', "character_dict_path": args.rec_char_dict_path, "use_space_char": args.use_space_char } elif self.rec_algorithm == "CAN": self.inverse = args.rec_image_inverse postprocess_params = { 'name': 'CANLabelDecode', "character_dict_path": args.rec_char_dict_path, "use_space_char": args.use_space_char } elif self.rec_algorithm == 'RFL': postprocess_params = { 'name': 'RFLLabelDecode', "character_dict_path": None, "use_space_char": args.use_space_char } self.postprocess_op = build_post_process(postprocess_params) self.limited_max_width = args.limited_max_width self.limited_min_width = args.limited_min_width self.weights_path = args.rec_model_path self.yaml_path = args.rec_yaml_path network_config = utility.get_arch_config(self.weights_path) weights = self.read_pytorch_weights(self.weights_path) self.out_channels = self.get_out_channels(weights) if self.rec_algorithm == 'NRTR': self.out_channels = list(weights.values())[-1].numpy().shape[0] elif self.rec_algorithm == 'SAR': self.out_channels = list(weights.values())[-3].numpy().shape[0] kwargs['out_channels'] = self.out_channels super(TextRecognizer, self).__init__(network_config, **kwargs) self.load_state_dict(weights) self.net.eval() self.net.to(self.device) for module in self.net.modules(): if isinstance(module, ConvBNAct): if module.use_act: torch.quantization.fuse_modules(module, ['conv', 'bn', 'act'], inplace=True) else: torch.quantization.fuse_modules(module, ['conv', 'bn'], inplace=True) def resize_norm_img(self, img, max_wh_ratio): imgC, imgH, imgW = self.rec_image_shape if self.rec_algorithm == 'NRTR' or self.rec_algorithm == 'ViTSTR': img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # return padding_im image_pil = Image.fromarray(np.uint8(img)) if self.rec_algorithm == 'ViTSTR': img = image_pil.resize([imgW, imgH], Image.BICUBIC) else: img = image_pil.resize([imgW, imgH], Image.ANTIALIAS) img = np.array(img) norm_img = np.expand_dims(img, -1) norm_img = norm_img.transpose((2, 0, 1)) if self.rec_algorithm == 'ViTSTR': norm_img = norm_img.astype(np.float32) / 255. else: norm_img = norm_img.astype(np.float32) / 128. - 1. return norm_img elif self.rec_algorithm == 'RFL': img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) resized_image = cv2.resize( img, (imgW, imgH), interpolation=cv2.INTER_CUBIC) resized_image = resized_image.astype('float32') resized_image = resized_image / 255 resized_image = resized_image[np.newaxis, :] resized_image -= 0.5 resized_image /= 0.5 return resized_image assert imgC == img.shape[2] max_wh_ratio = max(max_wh_ratio, imgW / imgH) imgW = int(imgH * max_wh_ratio) imgW = max(min(imgW, self.limited_max_width), self.limited_min_width) h, w = img.shape[:2] ratio = w / float(h) ratio_imgH = max(math.ceil(imgH * ratio), self.limited_min_width) resized_w = min(imgW, int(ratio_imgH)) resized_image = cv2.resize(img, (resized_w, imgH)) /127.5 - 1 padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) padding_im[:, :, 0:resized_w] = resized_image.transpose((2, 0, 1)) return padding_im def resize_norm_img_svtr(self, img, image_shape): imgC, imgH, imgW = image_shape resized_image = cv2.resize( img, (imgW, imgH), interpolation=cv2.INTER_LINEAR) resized_image = resized_image.astype('float32') resized_image = resized_image.transpose((2, 0, 1)) / 255 resized_image -= 0.5 resized_image /= 0.5 return resized_image def resize_norm_img_srn(self, img, image_shape): imgC, imgH, imgW = image_shape img_black = np.zeros((imgH, imgW)) im_hei = img.shape[0] im_wid = img.shape[1] if im_wid <= im_hei * 1: img_new = cv2.resize(img, (imgH * 1, imgH)) elif im_wid <= im_hei * 2: img_new = cv2.resize(img, (imgH * 2, imgH)) elif im_wid <= im_hei * 3: img_new = cv2.resize(img, (imgH * 3, imgH)) else: img_new = cv2.resize(img, (imgW, imgH)) img_np = np.asarray(img_new) img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY) img_black[:, 0:img_np.shape[1]] = img_np img_black = img_black[:, :, np.newaxis] row, col, c = img_black.shape c = 1 return np.reshape(img_black, (c, row, col)).astype(np.float32) def srn_other_inputs(self, image_shape, num_heads, max_text_length): imgC, imgH, imgW = image_shape feature_dim = int((imgH / 8) * (imgW / 8)) encoder_word_pos = np.array(range(0, feature_dim)).reshape( (feature_dim, 1)).astype('int64') gsrm_word_pos = np.array(range(0, max_text_length)).reshape( (max_text_length, 1)).astype('int64') gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length)) gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape( [-1, 1, max_text_length, max_text_length]) gsrm_slf_attn_bias1 = np.tile( gsrm_slf_attn_bias1, [1, num_heads, 1, 1]).astype('float32') * [-1e9] gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape( [-1, 1, max_text_length, max_text_length]) gsrm_slf_attn_bias2 = np.tile( gsrm_slf_attn_bias2, [1, num_heads, 1, 1]).astype('float32') * [-1e9] encoder_word_pos = encoder_word_pos[np.newaxis, :] gsrm_word_pos = gsrm_word_pos[np.newaxis, :] return [ encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2 ] def process_image_srn(self, img, image_shape, num_heads, max_text_length): norm_img = self.resize_norm_img_srn(img, image_shape) norm_img = norm_img[np.newaxis, :] [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \ self.srn_other_inputs(image_shape, num_heads, max_text_length) gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32) gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32) encoder_word_pos = encoder_word_pos.astype(np.int64) gsrm_word_pos = gsrm_word_pos.astype(np.int64) return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2) def resize_norm_img_sar(self, img, image_shape, width_downsample_ratio=0.25): imgC, imgH, imgW_min, imgW_max = image_shape h = img.shape[0] w = img.shape[1] valid_ratio = 1.0 # make sure new_width is an integral multiple of width_divisor. width_divisor = int(1 / width_downsample_ratio) # resize ratio = w / float(h) resize_w = math.ceil(imgH * ratio) if resize_w % width_divisor != 0: resize_w = round(resize_w / width_divisor) * width_divisor if imgW_min is not None: resize_w = max(imgW_min, resize_w) if imgW_max is not None: valid_ratio = min(1.0, 1.0 * resize_w / imgW_max) resize_w = min(imgW_max, resize_w) resized_image = cv2.resize(img, (resize_w, imgH)) resized_image = resized_image.astype('float32') # norm if image_shape[0] == 1: resized_image = resized_image / 255 resized_image = resized_image[np.newaxis, :] else: resized_image = resized_image.transpose((2, 0, 1)) / 255 resized_image -= 0.5 resized_image /= 0.5 resize_shape = resized_image.shape padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32) padding_im[:, :, 0:resize_w] = resized_image pad_shape = padding_im.shape return padding_im, resize_shape, pad_shape, valid_ratio def norm_img_can(self, img, image_shape): img = cv2.cvtColor( img, cv2.COLOR_BGR2GRAY) # CAN only predict gray scale image if self.inverse: img = 255 - img if self.rec_image_shape[0] == 1: h, w = img.shape _, imgH, imgW = self.rec_image_shape if h < imgH or w < imgW: padding_h = max(imgH - h, 0) padding_w = max(imgW - w, 0) img_padded = np.pad(img, ((0, padding_h), (0, padding_w)), 'constant', constant_values=(255)) img = img_padded img = np.expand_dims(img, 0) / 255.0 # h,w,c -> c,h,w img = img.astype('float32') return img def __call__(self, img_list, tqdm_enable=False, tqdm_desc="OCR-rec Predict"): img_num = len(img_list) # Calculate the aspect ratio of all text bars width_list = [] for img in img_list: width_list.append(img.shape[1] / float(img.shape[0])) # Sorting can speed up the recognition process indices = np.argsort(np.array(width_list)) # rec_res = [] rec_res = [['', 0.0]] * img_num batch_num = self.rec_batch_num elapse = 0 # for beg_img_no in range(0, img_num, batch_num): with tqdm(total=img_num, desc=tqdm_desc, disable=not tqdm_enable) as pbar: index = 0 for beg_img_no in range(0, img_num, batch_num): end_img_no = min(img_num, beg_img_no + batch_num) norm_img_batch = [] max_wh_ratio = width_list[indices[end_img_no - 1]] for ino in range(beg_img_no, end_img_no): if self.rec_algorithm == "SAR": norm_img, _, _, valid_ratio = self.resize_norm_img_sar( img_list[indices[ino]], self.rec_image_shape) norm_img = norm_img[np.newaxis, :] valid_ratio = np.expand_dims(valid_ratio, axis=0) valid_ratios = [] valid_ratios.append(valid_ratio) norm_img_batch.append(norm_img) elif self.rec_algorithm == "SVTR": norm_img = self.resize_norm_img_svtr(img_list[indices[ino]], self.rec_image_shape) norm_img = norm_img[np.newaxis, :] norm_img_batch.append(norm_img) elif self.rec_algorithm == "SRN": norm_img = self.process_image_srn(img_list[indices[ino]], self.rec_image_shape, 8, self.max_text_length) encoder_word_pos_list = [] gsrm_word_pos_list = [] gsrm_slf_attn_bias1_list = [] gsrm_slf_attn_bias2_list = [] encoder_word_pos_list.append(norm_img[1]) gsrm_word_pos_list.append(norm_img[2]) gsrm_slf_attn_bias1_list.append(norm_img[3]) gsrm_slf_attn_bias2_list.append(norm_img[4]) norm_img_batch.append(norm_img[0]) elif self.rec_algorithm == "CAN": norm_img = self.norm_img_can(img_list[indices[ino]], max_wh_ratio) norm_img = norm_img[np.newaxis, :] norm_img_batch.append(norm_img) norm_image_mask = np.ones(norm_img.shape, dtype='float32') word_label = np.ones([1, 36], dtype='int64') norm_img_mask_batch = [] word_label_list = [] norm_img_mask_batch.append(norm_image_mask) word_label_list.append(word_label) else: norm_img = self.resize_norm_img(img_list[indices[ino]], max_wh_ratio) norm_img = norm_img[np.newaxis, :] norm_img_batch.append(norm_img) norm_img_batch = np.concatenate(norm_img_batch) norm_img_batch = norm_img_batch.copy() if self.rec_algorithm == "SRN": starttime = time.time() encoder_word_pos_list = np.concatenate(encoder_word_pos_list) gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list) gsrm_slf_attn_bias1_list = np.concatenate( gsrm_slf_attn_bias1_list) gsrm_slf_attn_bias2_list = np.concatenate( gsrm_slf_attn_bias2_list) with torch.no_grad(): inp = torch.from_numpy(norm_img_batch) encoder_word_pos_inp = torch.from_numpy(encoder_word_pos_list) gsrm_word_pos_inp = torch.from_numpy(gsrm_word_pos_list) gsrm_slf_attn_bias1_inp = torch.from_numpy(gsrm_slf_attn_bias1_list) gsrm_slf_attn_bias2_inp = torch.from_numpy(gsrm_slf_attn_bias2_list) inp = inp.to(self.device) encoder_word_pos_inp = encoder_word_pos_inp.to(self.device) gsrm_word_pos_inp = gsrm_word_pos_inp.to(self.device) gsrm_slf_attn_bias1_inp = gsrm_slf_attn_bias1_inp.to(self.device) gsrm_slf_attn_bias2_inp = gsrm_slf_attn_bias2_inp.to(self.device) backbone_out = self.net.backbone(inp) # backbone_feat prob_out = self.net.head(backbone_out, [encoder_word_pos_inp, gsrm_word_pos_inp, gsrm_slf_attn_bias1_inp, gsrm_slf_attn_bias2_inp]) # preds = {"predict": prob_out[2]} preds = {"predict": prob_out["predict"]} elif self.rec_algorithm == "SAR": starttime = time.time() # valid_ratios = np.concatenate(valid_ratios) # inputs = [ # norm_img_batch, # valid_ratios, # ] with torch.no_grad(): inp = torch.from_numpy(norm_img_batch) inp = inp.to(self.device) preds = self.net(inp) elif self.rec_algorithm == "CAN": starttime = time.time() norm_img_mask_batch = np.concatenate(norm_img_mask_batch) word_label_list = np.concatenate(word_label_list) inputs = [norm_img_batch, norm_img_mask_batch, word_label_list] inp = [torch.from_numpy(e_i) for e_i in inputs] inp = [e_i.to(self.device) for e_i in inp] with torch.no_grad(): outputs = self.net(inp) outputs = [v.cpu().numpy() for k, v in enumerate(outputs)] preds = outputs else: starttime = time.time() with torch.no_grad(): inp = torch.from_numpy(norm_img_batch) inp = inp.to(self.device) preds = self.net(inp) with torch.no_grad(): rec_result = self.postprocess_op(preds) for rno in range(len(rec_result)): rec_res[indices[beg_img_no + rno]] = rec_result[rno] elapse += time.time() - starttime # 更新进度条,每次增加batch_size,但要注意最后一个batch可能不足batch_size current_batch_size = min(batch_num, img_num - index * batch_num) index += 1 pbar.update(current_batch_size) # Fix NaN values in recognition results for i in range(len(rec_res)): text, score = rec_res[i] if isinstance(score, float) and math.isnan(score): rec_res[i] = (text, 0.0) return rec_res, elapse