import enum import json from magic_pdf.data.dataset import Dataset from magic_pdf.libs.boxbase import (_is_in, _is_part_overlap, bbox_distance, bbox_relative_pos, box_area, calculate_iou, calculate_overlap_area_in_bbox1_area_ratio, get_overlap_area) from magic_pdf.libs.commons import fitz, join_path from magic_pdf.libs.coordinate_transform import get_scale_ratio from magic_pdf.libs.local_math import float_gt from magic_pdf.libs.ModelBlockTypeEnum import ModelBlockTypeEnum from magic_pdf.libs.ocr_content_type import CategoryId, ContentType from magic_pdf.pre_proc.remove_bbox_overlap import _remove_overlap_between_bbox from magic_pdf.rw.AbsReaderWriter import AbsReaderWriter from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter CAPATION_OVERLAP_AREA_RATIO = 0.6 MERGE_BOX_OVERLAP_AREA_RATIO = 1.1 class PosRelationEnum(enum.Enum): LEFT = 'left' RIGHT = 'right' UP = 'up' BOTTOM = 'bottom' ALL = 'all' class MagicModel: """每个函数没有得到元素的时候返回空list.""" def __fix_axis(self): for model_page_info in self.__model_list: need_remove_list = [] page_no = model_page_info['page_info']['page_no'] horizontal_scale_ratio, vertical_scale_ratio = get_scale_ratio( model_page_info, self.__docs.get_page(page_no) ) layout_dets = model_page_info['layout_dets'] for layout_det in layout_dets: if layout_det.get('bbox') is not None: # 兼容直接输出bbox的模型数据,如paddle x0, y0, x1, y1 = layout_det['bbox'] else: # 兼容直接输出poly的模型数据,如xxx x0, y0, _, _, x1, y1, _, _ = layout_det['poly'] bbox = [ int(x0 / horizontal_scale_ratio), int(y0 / vertical_scale_ratio), int(x1 / horizontal_scale_ratio), int(y1 / vertical_scale_ratio), ] layout_det['bbox'] = bbox # 删除高度或者宽度小于等于0的spans if bbox[2] - bbox[0] <= 0 or bbox[3] - bbox[1] <= 0: need_remove_list.append(layout_det) for need_remove in need_remove_list: layout_dets.remove(need_remove) def __fix_by_remove_low_confidence(self): for model_page_info in self.__model_list: need_remove_list = [] layout_dets = model_page_info['layout_dets'] for layout_det in layout_dets: if layout_det['score'] <= 0.05: need_remove_list.append(layout_det) else: continue for need_remove in need_remove_list: layout_dets.remove(need_remove) def __fix_by_remove_high_iou_and_low_confidence(self): for model_page_info in self.__model_list: need_remove_list = [] layout_dets = model_page_info['layout_dets'] for layout_det1 in layout_dets: for layout_det2 in layout_dets: if layout_det1 == layout_det2: continue if layout_det1['category_id'] in [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ] and layout_det2['category_id'] in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]: if ( calculate_iou(layout_det1['bbox'], layout_det2['bbox']) > 0.9 ): if layout_det1['score'] < layout_det2['score']: layout_det_need_remove = layout_det1 else: layout_det_need_remove = layout_det2 if layout_det_need_remove not in need_remove_list: need_remove_list.append(layout_det_need_remove) else: continue else: continue for need_remove in need_remove_list: layout_dets.remove(need_remove) def __init__(self, model_list: list, docs: Dataset): self.__model_list = model_list self.__docs = docs """为所有模型数据添加bbox信息(缩放,poly->bbox)""" self.__fix_axis() """删除置信度特别低的模型数据(<0.05),提高质量""" self.__fix_by_remove_low_confidence() """删除高iou(>0.9)数据中置信度较低的那个""" self.__fix_by_remove_high_iou_and_low_confidence() self.__fix_footnote() def _bbox_distance(self, bbox1, bbox2): left, right, bottom, top = bbox_relative_pos(bbox1, bbox2) flags = [left, right, bottom, top] count = sum([1 if v else 0 for v in flags]) if count > 1: return float('inf') if left or right: l1 = bbox1[3] - bbox1[1] l2 = bbox2[3] - bbox2[1] else: l1 = bbox1[2] - bbox1[0] l2 = bbox2[2] - bbox2[0] if l2 > l1 and (l2 - l1) / l1 > 0.3: return float('inf') return bbox_distance(bbox1, bbox2) def __fix_footnote(self): # 3: figure, 5: table, 7: footnote for model_page_info in self.__model_list: footnotes = [] figures = [] tables = [] for obj in model_page_info['layout_dets']: if obj['category_id'] == 7: footnotes.append(obj) elif obj['category_id'] == 3: figures.append(obj) elif obj['category_id'] == 5: tables.append(obj) if len(footnotes) * len(figures) == 0: continue dis_figure_footnote = {} dis_table_footnote = {} for i in range(len(footnotes)): for j in range(len(figures)): pos_flag_count = sum( list( map( lambda x: 1 if x else 0, bbox_relative_pos( footnotes[i]['bbox'], figures[j]['bbox'] ), ) ) ) if pos_flag_count > 1: continue dis_figure_footnote[i] = min( self._bbox_distance(figures[j]['bbox'], footnotes[i]['bbox']), dis_figure_footnote.get(i, float('inf')), ) for i in range(len(footnotes)): for j in range(len(tables)): pos_flag_count = sum( list( map( lambda x: 1 if x else 0, bbox_relative_pos( footnotes[i]['bbox'], tables[j]['bbox'] ), ) ) ) if pos_flag_count > 1: continue dis_table_footnote[i] = min( self._bbox_distance(tables[j]['bbox'], footnotes[i]['bbox']), dis_table_footnote.get(i, float('inf')), ) for i in range(len(footnotes)): if i not in dis_figure_footnote: continue if dis_table_footnote.get(i, float('inf')) > dis_figure_footnote[i]: footnotes[i]['category_id'] = CategoryId.ImageFootnote def __reduct_overlap(self, bboxes): N = len(bboxes) keep = [True] * N for i in range(N): for j in range(N): if i == j: continue if _is_in(bboxes[i]['bbox'], bboxes[j]['bbox']): keep[i] = False return [bboxes[i] for i in range(N) if keep[i]] def __tie_up_category_by_distance( self, page_no, subject_category_id, object_category_id ): """假定每个 subject 最多有一个 object (可以有多个相邻的 object 合并为单个 object),每个 object 只能属于一个 subject.""" ret = [] MAX_DIS_OF_POINT = 10**9 + 7 """ subject 和 object 的 bbox 会合并成一个大的 bbox (named: merged bbox)。 筛选出所有和 merged bbox 有 overlap 且 overlap 面积大于 object 的面积的 subjects。 再求出筛选出的 subjects 和 object 的最短距离 """ def search_overlap_between_boxes(subject_idx, object_idx): idxes = [subject_idx, object_idx] x0s = [all_bboxes[idx]['bbox'][0] for idx in idxes] y0s = [all_bboxes[idx]['bbox'][1] for idx in idxes] x1s = [all_bboxes[idx]['bbox'][2] for idx in idxes] y1s = [all_bboxes[idx]['bbox'][3] for idx in idxes] merged_bbox = [ min(x0s), min(y0s), max(x1s), max(y1s), ] ratio = 0 other_objects = list( map( lambda x: {'bbox': x['bbox'], 'score': x['score']}, filter( lambda x: x['category_id'] not in (object_category_id, subject_category_id), self.__model_list[page_no]['layout_dets'], ), ) ) for other_object in other_objects: ratio = max( ratio, get_overlap_area(merged_bbox, other_object['bbox']) * 1.0 / box_area(all_bboxes[object_idx]['bbox']), ) if ratio >= MERGE_BOX_OVERLAP_AREA_RATIO: break return ratio def may_find_other_nearest_bbox(subject_idx, object_idx): ret = float('inf') x0 = min( all_bboxes[subject_idx]['bbox'][0], all_bboxes[object_idx]['bbox'][0] ) y0 = min( all_bboxes[subject_idx]['bbox'][1], all_bboxes[object_idx]['bbox'][1] ) x1 = max( all_bboxes[subject_idx]['bbox'][2], all_bboxes[object_idx]['bbox'][2] ) y1 = max( all_bboxes[subject_idx]['bbox'][3], all_bboxes[object_idx]['bbox'][3] ) object_area = abs( all_bboxes[object_idx]['bbox'][2] - all_bboxes[object_idx]['bbox'][0] ) * abs( all_bboxes[object_idx]['bbox'][3] - all_bboxes[object_idx]['bbox'][1] ) for i in range(len(all_bboxes)): if ( i == subject_idx or all_bboxes[i]['category_id'] != subject_category_id ): continue if _is_part_overlap([x0, y0, x1, y1], all_bboxes[i]['bbox']) or _is_in( all_bboxes[i]['bbox'], [x0, y0, x1, y1] ): i_area = abs( all_bboxes[i]['bbox'][2] - all_bboxes[i]['bbox'][0] ) * abs(all_bboxes[i]['bbox'][3] - all_bboxes[i]['bbox'][1]) if i_area >= object_area: ret = min(float('inf'), dis[i][object_idx]) return ret def expand_bbbox(idxes): x0s = [all_bboxes[idx]['bbox'][0] for idx in idxes] y0s = [all_bboxes[idx]['bbox'][1] for idx in idxes] x1s = [all_bboxes[idx]['bbox'][2] for idx in idxes] y1s = [all_bboxes[idx]['bbox'][3] for idx in idxes] return min(x0s), min(y0s), max(x1s), max(y1s) subjects = self.__reduct_overlap( list( map( lambda x: {'bbox': x['bbox'], 'score': x['score']}, filter( lambda x: x['category_id'] == subject_category_id, self.__model_list[page_no]['layout_dets'], ), ) ) ) objects = self.__reduct_overlap( list( map( lambda x: {'bbox': x['bbox'], 'score': x['score']}, filter( lambda x: x['category_id'] == object_category_id, self.__model_list[page_no]['layout_dets'], ), ) ) ) subject_object_relation_map = {} subjects.sort( key=lambda x: x['bbox'][0] ** 2 + x['bbox'][1] ** 2 ) # get the distance ! all_bboxes = [] for v in subjects: all_bboxes.append( { 'category_id': subject_category_id, 'bbox': v['bbox'], 'score': v['score'], } ) for v in objects: all_bboxes.append( { 'category_id': object_category_id, 'bbox': v['bbox'], 'score': v['score'], } ) N = len(all_bboxes) dis = [[MAX_DIS_OF_POINT] * N for _ in range(N)] for i in range(N): for j in range(i): if ( all_bboxes[i]['category_id'] == subject_category_id and all_bboxes[j]['category_id'] == subject_category_id ): continue subject_idx, object_idx = i, j if all_bboxes[j]['category_id'] == subject_category_id: subject_idx, object_idx = j, i if ( search_overlap_between_boxes(subject_idx, object_idx) >= MERGE_BOX_OVERLAP_AREA_RATIO ): dis[i][j] = float('inf') dis[j][i] = dis[i][j] continue dis[i][j] = self._bbox_distance( all_bboxes[subject_idx]['bbox'], all_bboxes[object_idx]['bbox'] ) dis[j][i] = dis[i][j] used = set() for i in range(N): # 求第 i 个 subject 所关联的 object if all_bboxes[i]['category_id'] != subject_category_id: continue seen = set() candidates = [] arr = [] for j in range(N): pos_flag_count = sum( list( map( lambda x: 1 if x else 0, bbox_relative_pos( all_bboxes[i]['bbox'], all_bboxes[j]['bbox'] ), ) ) ) if pos_flag_count > 1: continue if ( all_bboxes[j]['category_id'] != object_category_id or j in used or dis[i][j] == MAX_DIS_OF_POINT ): continue left, right, _, _ = bbox_relative_pos( all_bboxes[i]['bbox'], all_bboxes[j]['bbox'] ) # 由 pos_flag_count 相关逻辑保证本段逻辑准确性 if left or right: one_way_dis = all_bboxes[i]['bbox'][2] - all_bboxes[i]['bbox'][0] else: one_way_dis = all_bboxes[i]['bbox'][3] - all_bboxes[i]['bbox'][1] if dis[i][j] > one_way_dis: continue arr.append((dis[i][j], j)) arr.sort(key=lambda x: x[0]) if len(arr) > 0: """ bug: 离该subject 最近的 object 可能跨越了其它的 subject。 比如 [this subect] [some sbuject] [the nearest object of subject] """ if may_find_other_nearest_bbox(i, arr[0][1]) >= arr[0][0]: candidates.append(arr[0][1]) seen.add(arr[0][1]) # 已经获取初始种子 for j in set(candidates): tmp = [] for k in range(i + 1, N): pos_flag_count = sum( list( map( lambda x: 1 if x else 0, bbox_relative_pos( all_bboxes[j]['bbox'], all_bboxes[k]['bbox'] ), ) ) ) if pos_flag_count > 1: continue if ( all_bboxes[k]['category_id'] != object_category_id or k in used or k in seen or dis[j][k] == MAX_DIS_OF_POINT or dis[j][k] > dis[i][j] ): continue is_nearest = True for ni in range(i + 1, N): if ni in (j, k) or ni in used or ni in seen: continue if not float_gt(dis[ni][k], dis[j][k]): is_nearest = False break if is_nearest: nx0, ny0, nx1, ny1 = expand_bbbox(list(seen) + [k]) n_dis = bbox_distance( all_bboxes[i]['bbox'], [nx0, ny0, nx1, ny1] ) if float_gt(dis[i][j], n_dis): continue tmp.append(k) seen.add(k) candidates = tmp if len(candidates) == 0: break # 已经获取到某个 figure 下所有的最靠近的 captions,以及最靠近这些 captions 的 captions 。 # 先扩一下 bbox, ox0, oy0, ox1, oy1 = expand_bbbox(list(seen) + [i]) ix0, iy0, ix1, iy1 = all_bboxes[i]['bbox'] # 分成了 4 个截取空间,需要计算落在每个截取空间下 objects 合并后占据的矩形面积 caption_poses = [ [ox0, oy0, ix0, oy1], [ox0, oy0, ox1, iy0], [ox0, iy1, ox1, oy1], [ix1, oy0, ox1, oy1], ] caption_areas = [] for bbox in caption_poses: embed_arr = [] for idx in seen: if ( calculate_overlap_area_in_bbox1_area_ratio( all_bboxes[idx]['bbox'], bbox ) > CAPATION_OVERLAP_AREA_RATIO ): embed_arr.append(idx) if len(embed_arr) > 0: embed_x0 = min([all_bboxes[idx]['bbox'][0] for idx in embed_arr]) embed_y0 = min([all_bboxes[idx]['bbox'][1] for idx in embed_arr]) embed_x1 = max([all_bboxes[idx]['bbox'][2] for idx in embed_arr]) embed_y1 = max([all_bboxes[idx]['bbox'][3] for idx in embed_arr]) caption_areas.append( int(abs(embed_x1 - embed_x0) * abs(embed_y1 - embed_y0)) ) else: caption_areas.append(0) subject_object_relation_map[i] = [] if max(caption_areas) > 0: max_area_idx = caption_areas.index(max(caption_areas)) caption_bbox = caption_poses[max_area_idx] for j in seen: if ( calculate_overlap_area_in_bbox1_area_ratio( all_bboxes[j]['bbox'], caption_bbox ) > CAPATION_OVERLAP_AREA_RATIO ): used.add(j) subject_object_relation_map[i].append(j) for i in sorted(subject_object_relation_map.keys()): result = { 'subject_body': all_bboxes[i]['bbox'], 'all': all_bboxes[i]['bbox'], 'score': all_bboxes[i]['score'], } if len(subject_object_relation_map[i]) > 0: x0 = min( [all_bboxes[j]['bbox'][0] for j in subject_object_relation_map[i]] ) y0 = min( [all_bboxes[j]['bbox'][1] for j in subject_object_relation_map[i]] ) x1 = max( [all_bboxes[j]['bbox'][2] for j in subject_object_relation_map[i]] ) y1 = max( [all_bboxes[j]['bbox'][3] for j in subject_object_relation_map[i]] ) result['object_body'] = [x0, y0, x1, y1] result['all'] = [ min(x0, all_bboxes[i]['bbox'][0]), min(y0, all_bboxes[i]['bbox'][1]), max(x1, all_bboxes[i]['bbox'][2]), max(y1, all_bboxes[i]['bbox'][3]), ] ret.append(result) total_subject_object_dis = 0 # 计算已经配对的 distance 距离 for i in subject_object_relation_map.keys(): for j in subject_object_relation_map[i]: total_subject_object_dis += bbox_distance( all_bboxes[i]['bbox'], all_bboxes[j]['bbox'] ) # 计算未匹配的 subject 和 object 的距离(非精确版) with_caption_subject = set( [ key for key in subject_object_relation_map.keys() if len(subject_object_relation_map[i]) > 0 ] ) for i in range(N): if all_bboxes[i]['category_id'] != object_category_id or i in used: continue candidates = [] for j in range(N): if ( all_bboxes[j]['category_id'] != subject_category_id or j in with_caption_subject ): continue candidates.append((dis[i][j], j)) if len(candidates) > 0: candidates.sort(key=lambda x: x[0]) total_subject_object_dis += candidates[0][1] with_caption_subject.add(j) return ret, total_subject_object_dis def __tie_up_category_by_distance_v2( self, page_no: int, subject_category_id: int, object_category_id: int, priority_pos: PosRelationEnum, ): """_summary_ Args: page_no (int): _description_ subject_category_id (int): _description_ object_category_id (int): _description_ priority_pos (PosRelationEnum): _description_ Returns: _type_: _description_ """ AXIS_MULPLICITY = 0.5 subjects = self.__reduct_overlap( list( map( lambda x: {'bbox': x['bbox'], 'score': x['score']}, filter( lambda x: x['category_id'] == subject_category_id, self.__model_list[page_no]['layout_dets'], ), ) ) ) objects = self.__reduct_overlap( list( map( lambda x: {'bbox': x['bbox'], 'score': x['score']}, filter( lambda x: x['category_id'] == object_category_id, self.__model_list[page_no]['layout_dets'], ), ) ) ) M = len(objects) subjects.sort(key=lambda x: x['bbox'][0] ** 2 + x['bbox'][1] ** 2) objects.sort(key=lambda x: x['bbox'][0] ** 2 + x['bbox'][1] ** 2) sub_obj_map_h = {i: [] for i in range(len(subjects))} dis_by_directions = { 'top': [[-1, float('inf')]] * M, 'bottom': [[-1, float('inf')]] * M, 'left': [[-1, float('inf')]] * M, 'right': [[-1, float('inf')]] * M, } for i, obj in enumerate(objects): l_x_axis, l_y_axis = ( obj['bbox'][2] - obj['bbox'][0], obj['bbox'][3] - obj['bbox'][1], ) axis_unit = min(l_x_axis, l_y_axis) for j, sub in enumerate(subjects): bbox1, bbox2, _ = _remove_overlap_between_bbox( objects[i]['bbox'], subjects[j]['bbox'] ) left, right, bottom, top = bbox_relative_pos(bbox1, bbox2) flags = [left, right, bottom, top] if sum([1 if v else 0 for v in flags]) > 1: continue if left: if dis_by_directions['left'][i][1] > bbox_distance( obj['bbox'], sub['bbox'] ): dis_by_directions['left'][i] = [ j, bbox_distance(obj['bbox'], sub['bbox']), ] if right: if dis_by_directions['right'][i][1] > bbox_distance( obj['bbox'], sub['bbox'] ): dis_by_directions['right'][i] = [ j, bbox_distance(obj['bbox'], sub['bbox']), ] if bottom: if dis_by_directions['bottom'][i][1] > bbox_distance( obj['bbox'], sub['bbox'] ): dis_by_directions['bottom'][i] = [ j, bbox_distance(obj['bbox'], sub['bbox']), ] if top: if dis_by_directions['top'][i][1] > bbox_distance( obj['bbox'], sub['bbox'] ): dis_by_directions['top'][i] = [ j, bbox_distance(obj['bbox'], sub['bbox']), ] if ( dis_by_directions['top'][i][1] != float('inf') and dis_by_directions['bottom'][i][1] != float('inf') and priority_pos in (PosRelationEnum.BOTTOM, PosRelationEnum.UP) ): RATIO = 3 if ( abs( dis_by_directions['top'][i][1] - dis_by_directions['bottom'][i][1] ) < RATIO * axis_unit ): if priority_pos == PosRelationEnum.BOTTOM: sub_obj_map_h[dis_by_directions['bottom'][i][0]].append(i) else: sub_obj_map_h[dis_by_directions['top'][i][0]].append(i) continue if dis_by_directions['left'][i][1] != float('inf') or dis_by_directions[ 'right' ][i][1] != float('inf'): if dis_by_directions['left'][i][1] != float( 'inf' ) and dis_by_directions['right'][i][1] != float('inf'): if AXIS_MULPLICITY * axis_unit >= abs( dis_by_directions['left'][i][1] - dis_by_directions['right'][i][1] ): left_sub_bbox = subjects[dis_by_directions['left'][i][0]][ 'bbox' ] right_sub_bbox = subjects[dis_by_directions['right'][i][0]][ 'bbox' ] left_sub_bbox_y_axis = left_sub_bbox[3] - left_sub_bbox[1] right_sub_bbox_y_axis = right_sub_bbox[3] - right_sub_bbox[1] if ( abs(left_sub_bbox_y_axis - l_y_axis) + dis_by_directions['left'][i][0] > abs(right_sub_bbox_y_axis - l_y_axis) + dis_by_directions['right'][i][0] ): left_or_right = dis_by_directions['right'][i] else: left_or_right = dis_by_directions['left'][i] else: left_or_right = dis_by_directions['left'][i] if left_or_right[1] > dis_by_directions['right'][i][1]: left_or_right = dis_by_directions['right'][i] else: left_or_right = dis_by_directions['left'][i] if left_or_right[1] == float('inf'): left_or_right = dis_by_directions['right'][i] else: left_or_right = [-1, float('inf')] if dis_by_directions['top'][i][1] != float('inf') or dis_by_directions[ 'bottom' ][i][1] != float('inf'): if dis_by_directions['top'][i][1] != float('inf') and dis_by_directions[ 'bottom' ][i][1] != float('inf'): if AXIS_MULPLICITY * axis_unit >= abs( dis_by_directions['top'][i][1] - dis_by_directions['bottom'][i][1] ): top_bottom = subjects[dis_by_directions['bottom'][i][0]]['bbox'] bottom_top = subjects[dis_by_directions['top'][i][0]]['bbox'] top_bottom_x_axis = top_bottom[2] - top_bottom[0] bottom_top_x_axis = bottom_top[2] - bottom_top[0] if ( abs(top_bottom_x_axis - l_x_axis) + dis_by_directions['bottom'][i][1] > abs(bottom_top_x_axis - l_x_axis) + dis_by_directions['top'][i][1] ): top_or_bottom = dis_by_directions['top'][i] else: top_or_bottom = dis_by_directions['bottom'][i] else: top_or_bottom = dis_by_directions['top'][i] if top_or_bottom[1] > dis_by_directions['bottom'][i][1]: top_or_bottom = dis_by_directions['bottom'][i] else: top_or_bottom = dis_by_directions['top'][i] if top_or_bottom[1] == float('inf'): top_or_bottom = dis_by_directions['bottom'][i] else: top_or_bottom = [-1, float('inf')] if left_or_right[1] != float('inf') or top_or_bottom[1] != float('inf'): if left_or_right[1] != float('inf') and top_or_bottom[1] != float( 'inf' ): if AXIS_MULPLICITY * axis_unit >= abs( left_or_right[1] - top_or_bottom[1] ): y_axis_bbox = subjects[left_or_right[0]]['bbox'] x_axis_bbox = subjects[top_or_bottom[0]]['bbox'] if ( abs((x_axis_bbox[2] - x_axis_bbox[0]) - l_x_axis) / l_x_axis > abs((y_axis_bbox[3] - y_axis_bbox[1]) - l_y_axis) / l_y_axis ): sub_obj_map_h[left_or_right[0]].append(i) else: sub_obj_map_h[top_or_bottom[0]].append(i) else: if left_or_right[1] > top_or_bottom[1]: sub_obj_map_h[top_or_bottom[0]].append(i) else: sub_obj_map_h[left_or_right[0]].append(i) else: if left_or_right[1] != float('inf'): sub_obj_map_h[left_or_right[0]].append(i) else: sub_obj_map_h[top_or_bottom[0]].append(i) ret = [] for i in sub_obj_map_h.keys(): ret.append( { 'sub_bbox': { 'bbox': subjects[i]['bbox'], 'score': subjects[i]['score'], }, 'obj_bboxes': [ {'score': objects[j]['score'], 'bbox': objects[j]['bbox']} for j in sub_obj_map_h[i] ], 'sub_idx': i, } ) return ret def get_imgs_v2(self, page_no: int): with_captions = self.__tie_up_category_by_distance_v2( page_no, 3, 4, PosRelationEnum.BOTTOM ) with_footnotes = self.__tie_up_category_by_distance_v2( page_no, 3, CategoryId.ImageFootnote, PosRelationEnum.ALL ) ret = [] for v in with_captions: record = { 'image_body': v['sub_bbox'], 'image_caption_list': v['obj_bboxes'], } filter_idx = v['sub_idx'] d = next(filter(lambda x: x['sub_idx'] == filter_idx, with_footnotes)) record['image_footnote_list'] = d['obj_bboxes'] ret.append(record) return ret def get_tables_v2(self, page_no: int) -> list: with_captions = self.__tie_up_category_by_distance_v2( page_no, 5, 6, PosRelationEnum.UP ) with_footnotes = self.__tie_up_category_by_distance_v2( page_no, 5, 7, PosRelationEnum.ALL ) ret = [] for v in with_captions: record = { 'table_body': v['sub_bbox'], 'table_caption_list': v['obj_bboxes'], } filter_idx = v['sub_idx'] d = next(filter(lambda x: x['sub_idx'] == filter_idx, with_footnotes)) record['table_footnote_list'] = d['obj_bboxes'] ret.append(record) return ret def get_imgs(self, page_no: int): with_captions, _ = self.__tie_up_category_by_distance(page_no, 3, 4) with_footnotes, _ = self.__tie_up_category_by_distance( page_no, 3, CategoryId.ImageFootnote ) ret = [] N, M = len(with_captions), len(with_footnotes) assert N == M for i in range(N): record = { 'score': with_captions[i]['score'], 'img_caption_bbox': with_captions[i].get('object_body', None), 'img_body_bbox': with_captions[i]['subject_body'], 'img_footnote_bbox': with_footnotes[i].get('object_body', None), } x0 = min(with_captions[i]['all'][0], with_footnotes[i]['all'][0]) y0 = min(with_captions[i]['all'][1], with_footnotes[i]['all'][1]) x1 = max(with_captions[i]['all'][2], with_footnotes[i]['all'][2]) y1 = max(with_captions[i]['all'][3], with_footnotes[i]['all'][3]) record['bbox'] = [x0, y0, x1, y1] ret.append(record) return ret def get_tables( self, page_no: int ) -> list: # 3个坐标, caption, table主体,table-note with_captions, _ = self.__tie_up_category_by_distance(page_no, 5, 6) with_footnotes, _ = self.__tie_up_category_by_distance(page_no, 5, 7) ret = [] N, M = len(with_captions), len(with_footnotes) assert N == M for i in range(N): record = { 'score': with_captions[i]['score'], 'table_caption_bbox': with_captions[i].get('object_body', None), 'table_body_bbox': with_captions[i]['subject_body'], 'table_footnote_bbox': with_footnotes[i].get('object_body', None), } x0 = min(with_captions[i]['all'][0], with_footnotes[i]['all'][0]) y0 = min(with_captions[i]['all'][1], with_footnotes[i]['all'][1]) x1 = max(with_captions[i]['all'][2], with_footnotes[i]['all'][2]) y1 = max(with_captions[i]['all'][3], with_footnotes[i]['all'][3]) record['bbox'] = [x0, y0, x1, y1] ret.append(record) return ret def get_equations(self, page_no: int) -> list: # 有坐标,也有字 inline_equations = self.__get_blocks_by_type( ModelBlockTypeEnum.EMBEDDING.value, page_no, ['latex'] ) interline_equations = self.__get_blocks_by_type( ModelBlockTypeEnum.ISOLATED.value, page_no, ['latex'] ) interline_equations_blocks = self.__get_blocks_by_type( ModelBlockTypeEnum.ISOLATE_FORMULA.value, page_no ) return inline_equations, interline_equations, interline_equations_blocks def get_discarded(self, page_no: int) -> list: # 自研模型,只有坐标 blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.ABANDON.value, page_no) return blocks def get_text_blocks(self, page_no: int) -> list: # 自研模型搞的,只有坐标,没有字 blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.PLAIN_TEXT.value, page_no) return blocks def get_title_blocks(self, page_no: int) -> list: # 自研模型,只有坐标,没字 blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.TITLE.value, page_no) return blocks def get_ocr_text(self, page_no: int) -> list: # paddle 搞的,有字也有坐标 text_spans = [] model_page_info = self.__model_list[page_no] layout_dets = model_page_info['layout_dets'] for layout_det in layout_dets: if layout_det['category_id'] == '15': span = { 'bbox': layout_det['bbox'], 'content': layout_det['text'], } text_spans.append(span) return text_spans def get_all_spans(self, page_no: int) -> list: def remove_duplicate_spans(spans): new_spans = [] for span in spans: if not any(span == existing_span for existing_span in new_spans): new_spans.append(span) return new_spans all_spans = [] model_page_info = self.__model_list[page_no] layout_dets = model_page_info['layout_dets'] allow_category_id_list = [3, 5, 13, 14, 15] """当成span拼接的""" # 3: 'image', # 图片 # 5: 'table', # 表格 # 13: 'inline_equation', # 行内公式 # 14: 'interline_equation', # 行间公式 # 15: 'text', # ocr识别文本 for layout_det in layout_dets: category_id = layout_det['category_id'] if category_id in allow_category_id_list: span = {'bbox': layout_det['bbox'], 'score': layout_det['score']} if category_id == 3: span['type'] = ContentType.Image elif category_id == 5: # 获取table模型结果 latex = layout_det.get('latex', None) html = layout_det.get('html', None) if latex: span['latex'] = latex elif html: span['html'] = html span['type'] = ContentType.Table elif category_id == 13: span['content'] = layout_det['latex'] span['type'] = ContentType.InlineEquation elif category_id == 14: span['content'] = layout_det['latex'] span['type'] = ContentType.InterlineEquation elif category_id == 15: span['content'] = layout_det['text'] span['type'] = ContentType.Text all_spans.append(span) return remove_duplicate_spans(all_spans) def get_page_size(self, page_no: int): # 获取页面宽高 # 获取当前页的page对象 page = self.__docs.get_page(page_no).get_page_info() # 获取当前页的宽高 page_w = page.w page_h = page.h return page_w, page_h def __get_blocks_by_type( self, type: int, page_no: int, extra_col: list[str] = [] ) -> list: blocks = [] for page_dict in self.__model_list: layout_dets = page_dict.get('layout_dets', []) page_info = page_dict.get('page_info', {}) page_number = page_info.get('page_no', -1) if page_no != page_number: continue for item in layout_dets: category_id = item.get('category_id', -1) bbox = item.get('bbox', None) if category_id == type: block = { 'bbox': bbox, 'score': item.get('score'), } for col in extra_col: block[col] = item.get(col, None) blocks.append(block) return blocks def get_model_list(self, page_no): return self.__model_list[page_no] if __name__ == '__main__': drw = DiskReaderWriter(r'D:/project/20231108code-clean') if 0: pdf_file_path = r'linshixuqiu\19983-00.pdf' model_file_path = r'linshixuqiu\19983-00_new.json' pdf_bytes = drw.read(pdf_file_path, AbsReaderWriter.MODE_BIN) model_json_txt = drw.read(model_file_path, AbsReaderWriter.MODE_TXT) model_list = json.loads(model_json_txt) write_path = r'D:\project\20231108code-clean\linshixuqiu\19983-00' img_bucket_path = 'imgs' img_writer = DiskReaderWriter(join_path(write_path, img_bucket_path)) pdf_docs = fitz.open('pdf', pdf_bytes) magic_model = MagicModel(model_list, pdf_docs) if 1: model_list = json.loads( drw.read('/opt/data/pdf/20240418/j.chroma.2009.03.042.json') ) pdf_bytes = drw.read( '/opt/data/pdf/20240418/j.chroma.2009.03.042.pdf', AbsReaderWriter.MODE_BIN ) pdf_docs = fitz.open('pdf', pdf_bytes) magic_model = MagicModel(model_list, pdf_docs) for i in range(7): print(magic_model.get_imgs(i))