import cv2 import copy import numpy as np from . import predict_rec from . import predict_det from . import predict_cls class TextSystem(object): def __init__(self, args, **kwargs): self.text_detector = predict_det.TextDetector(args, **kwargs) self.text_recognizer = predict_rec.TextRecognizer(args, **kwargs) self.use_angle_cls = args.use_angle_cls self.drop_score = args.drop_score if self.use_angle_cls: self.text_classifier = predict_cls.TextClassifier(args, **kwargs) def get_rotate_crop_image(self, img, points): ''' img_height, img_width = img.shape[0:2] left = int(np.min(points[:, 0])) right = int(np.max(points[:, 0])) top = int(np.min(points[:, 1])) bottom = int(np.max(points[:, 1])) img_crop = img[top:bottom, left:right, :].copy() points[:, 0] = points[:, 0] - left points[:, 1] = points[:, 1] - top ''' img_crop_width = int( max( np.linalg.norm(points[0] - points[1]), np.linalg.norm(points[2] - points[3]))) img_crop_height = int( max( np.linalg.norm(points[0] - points[3]), np.linalg.norm(points[1] - points[2]))) pts_std = np.float32([[0, 0], [img_crop_width, 0], [img_crop_width, img_crop_height], [0, img_crop_height]]) M = cv2.getPerspectiveTransform(points, pts_std) dst_img = cv2.warpPerspective( img, M, (img_crop_width, img_crop_height), borderMode=cv2.BORDER_REPLICATE, flags=cv2.INTER_CUBIC) dst_img_height, dst_img_width = dst_img.shape[0:2] if dst_img_height * 1.0 / dst_img_width >= 1.5: dst_img = np.rot90(dst_img) return dst_img def __call__(self, img): ori_im = img.copy() dt_boxes, elapse = self.text_detector(img) print("dt_boxes num : {}, elapse : {}".format( len(dt_boxes), elapse)) if dt_boxes is None: return None, None img_crop_list = [] dt_boxes = sorted_boxes(dt_boxes) for bno in range(len(dt_boxes)): tmp_box = copy.deepcopy(dt_boxes[bno]) img_crop = self.get_rotate_crop_image(ori_im, tmp_box) img_crop_list.append(img_crop) if self.use_angle_cls: img_crop_list, angle_list, elapse = self.text_classifier( img_crop_list) print("cls num : {}, elapse : {}".format( len(img_crop_list), elapse)) rec_res, elapse = self.text_recognizer(img_crop_list) print("rec_res num : {}, elapse : {}".format( len(rec_res), elapse)) # self.print_draw_crop_rec_res(img_crop_list, rec_res) filter_boxes, filter_rec_res = [], [] for box, rec_reuslt in zip(dt_boxes, rec_res): text, score = rec_reuslt if score >= self.drop_score: filter_boxes.append(box) filter_rec_res.append(rec_reuslt) return filter_boxes, filter_rec_res def sorted_boxes(dt_boxes): """ Sort text boxes in order from top to bottom, left to right args: dt_boxes(array):detected text boxes with shape [4, 2] return: sorted boxes(array) with shape [4, 2] """ num_boxes = dt_boxes.shape[0] sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0])) _boxes = list(sorted_boxes) for i in range(num_boxes - 1): if abs(_boxes[i + 1][0][1] - _boxes[i][0][1]) < 10 and \ (_boxes[i + 1][0][0] < _boxes[i][0][0]): tmp = _boxes[i] _boxes[i] = _boxes[i + 1] _boxes[i + 1] = tmp return _boxes