import os from pathlib import Path import cv2 import numpy as np import torch from loguru import logger from rapid_table import RapidTable, RapidTableInput from rapid_table.main import ModelType from magic_pdf.libs.config_reader import get_device class RapidTableModel(object): def __init__(self, ocr_engine, table_sub_model_name='slanet_plus'): sub_model_list = [model.value for model in ModelType] if table_sub_model_name is None: input_args = RapidTableInput() elif table_sub_model_name in sub_model_list: if torch.cuda.is_available() and table_sub_model_name == "unitable": input_args = RapidTableInput(model_type=table_sub_model_name, use_cuda=True, device=get_device()) else: root_dir = Path(__file__).absolute().parent.parent.parent.parent.parent slanet_plus_model_path = os.path.join(root_dir, 'resources', 'slanet_plus', 'slanet-plus.onnx') input_args = RapidTableInput(model_type=table_sub_model_name, model_path=slanet_plus_model_path) else: raise ValueError(f"Invalid table_sub_model_name: {table_sub_model_name}. It must be one of {sub_model_list}") self.table_model = RapidTable(input_args) # self.ocr_model_name = "RapidOCR" # if torch.cuda.is_available(): # from rapidocr_paddle import RapidOCR # self.ocr_engine = RapidOCR(det_use_cuda=True, cls_use_cuda=True, rec_use_cuda=True) # else: # from rapidocr_onnxruntime import RapidOCR # self.ocr_engine = RapidOCR() # self.ocr_model_name = "PaddleOCR" self.ocr_engine = ocr_engine def predict(self, image): bgr_image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR) # First check the overall image aspect ratio (height/width) img_height, img_width = bgr_image.shape[:2] img_aspect_ratio = img_height / img_width if img_width > 0 else 1.0 img_is_portrait = img_aspect_ratio > 1.2 if img_is_portrait: det_res = self.ocr_engine.ocr(bgr_image, rec=False)[0] # Check if table is rotated by analyzing text box aspect ratios is_rotated = False if det_res: vertical_count = 0 for box_ocr_res in det_res: p1, p2, p3, p4 = box_ocr_res # Calculate width and height width = p3[0] - p1[0] height = p3[1] - p1[1] aspect_ratio = width / height if height > 0 else 1.0 # Count vertical vs horizontal text boxes if aspect_ratio < 0.8: # Taller than wide - vertical text vertical_count += 1 # elif aspect_ratio > 1.2: # Wider than tall - horizontal text # horizontal_count += 1 # If we have more vertical text boxes than horizontal ones, # and vertical ones are significant, table might be rotated if vertical_count >= len(det_res) * 0.3: is_rotated = True # logger.debug(f"Text orientation analysis: vertical={vertical_count}, det_res={len(det_res)}, rotated={is_rotated}") # Rotate image if necessary if is_rotated: # logger.debug("Table appears to be in portrait orientation, rotating 90 degrees clockwise") image = cv2.rotate(np.asarray(image), cv2.ROTATE_90_CLOCKWISE) bgr_image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # Continue with OCR on potentially rotated image ocr_result = self.ocr_engine.ocr(bgr_image)[0] if ocr_result: ocr_result = [[item[0], item[1][0], item[1][1]] for item in ocr_result if len(item) == 2 and isinstance(item[1], tuple)] else: ocr_result = None if ocr_result: table_results = self.table_model(np.asarray(image), ocr_result) html_code = table_results.pred_html table_cell_bboxes = table_results.cell_bboxes logic_points = table_results.logic_points elapse = table_results.elapse return html_code, table_cell_bboxes, logic_points, elapse else: return None, None, None, None