import cv2 import numpy as np import torch from loguru import logger from rapid_table import RapidTable class RapidTableModel(object): def __init__(self, ocr_engine): self.table_model = RapidTable() if ocr_engine is None: self.ocr_model_name = "RapidOCR" if torch.cuda.is_available(): from rapidocr_paddle import RapidOCR self.ocr_engine = RapidOCR(det_use_cuda=True, cls_use_cuda=True, rec_use_cuda=True) else: from rapidocr_onnxruntime import RapidOCR self.ocr_engine = RapidOCR() else: self.ocr_model_name = "PaddleOCR" self.ocr_engine = ocr_engine def predict(self, image): if self.ocr_model_name == "RapidOCR": ocr_result, _ = self.ocr_engine(np.asarray(image)) elif self.ocr_model_name == "PaddleOCR": bgr_image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR) ocr_result = self.ocr_engine.ocr(bgr_image)[0] ocr_result = [[item[0], item[1][0], item[1][1]] for item in ocr_result if len(item) == 2 and isinstance(item[1], tuple)] else: logger.error("OCR model not supported") ocr_result = None if ocr_result: html_code, table_cell_bboxes, elapse = self.table_model(np.asarray(image), ocr_result) return html_code, table_cell_bboxes, elapse else: return None, None, None