# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time from typing import Any, Dict, List, Tuple import numpy as np from .table_stucture_utils import ( OrtInferSession, TableLabelDecode, TablePreprocess, BatchTablePreprocess, ) class TableStructurer: def __init__(self, config: Dict[str, Any]): self.preprocess_op = TablePreprocess() self.batch_preprocess_op = BatchTablePreprocess() self.session = OrtInferSession(config) self.character = self.session.get_metadata() self.postprocess_op = TableLabelDecode(self.character) def process(self, img): starttime = time.time() data = {"image": img} data = self.preprocess_op(data) img = data[0] if img is None: return None, 0 img = np.expand_dims(img, axis=0) img = img.copy() outputs = self.session([img]) preds = {"loc_preds": outputs[0], "structure_probs": outputs[1]} shape_list = np.expand_dims(data[-1], axis=0) post_result = self.postprocess_op(preds, [shape_list]) bbox_list = post_result["bbox_batch_list"][0] structure_str_list = post_result["structure_batch_list"][0] structure_str_list = structure_str_list[0] structure_str_list = ( ["", "", ""] + structure_str_list + ["
", "", ""] ) elapse = time.time() - starttime return structure_str_list, bbox_list, elapse def batch_process( self, img_list: List[np.ndarray] ) -> List[Tuple[List[str], np.ndarray, float]]: """批量处理图像列表 Args: img_list: 图像列表 Returns: 结果列表,每个元素包含 (table_struct_str, cell_bboxes, elapse) """ starttime = time.perf_counter() batch_data = self.batch_preprocess_op(img_list) preprocessed_images = batch_data[0] shape_lists = batch_data[1] preprocessed_images = np.array(preprocessed_images) bbox_preds, struct_probs = self.session([preprocessed_images]) batch_size = preprocessed_images.shape[0] results = [] for bbox_pred, struct_prob, shape_list in zip( bbox_preds, struct_probs, shape_lists ): preds = { "loc_preds": np.expand_dims(bbox_pred, axis=0), "structure_probs": np.expand_dims(struct_prob, axis=0), } shape_list = np.expand_dims(shape_list, axis=0) post_result = self.postprocess_op(preds, [shape_list]) bbox_list = post_result["bbox_batch_list"][0] structure_str_list = post_result["structure_batch_list"][0] structure_str_list = structure_str_list[0] structure_str_list = ( ["", "", ""] + structure_str_list + ["
", "", ""] ) results.append((structure_str_list, bbox_list, 0)) total_elapse = time.perf_counter() - starttime for i in range(len(results)): results[i] = (results[i][0], results[i][1], total_elapse / batch_size) return results