import random import fitz import cv2 from paddleocr import PPStructure from PIL import Image from loguru import logger import numpy as np def region_to_bbox(region): x0 = region[0][0] y0 = region[0][1] x1 = region[2][0] y1 = region[2][1] return [x0, y0, x1, y1] def dict_compare(d1, d2): return d1.items() == d2.items() def remove_duplicates_dicts(lst): unique_dicts = [] for dict_item in lst: if not any(dict_compare(dict_item, existing_dict) for existing_dict in unique_dicts): unique_dicts.append(dict_item) return unique_dicts def doc_analyze(pdf_bytes: bytes, ocr: bool = False, show_log: bool = False): ocr_engine = PPStructure(table=False, ocr=ocr, show_log=show_log) imgs = [] with fitz.open("pdf", pdf_bytes) as doc: for index in range(0, doc.page_count): page = doc[index] dpi = 200 mat = fitz.Matrix(dpi / 72, dpi / 72) pm = page.get_pixmap(matrix=mat, alpha=False) # if width or height > 2000 pixels, don't enlarge the image # if pm.width > 2000 or pm.height > 2000: # pm = page.get_pixmap(matrix=fitz.Matrix(1, 1), alpha=False) img = Image.frombytes("RGB", [pm.width, pm.height], pm.samples) img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) img_dict = { "img": img, "width": pm.width, "height": pm.height } imgs.append(img_dict) model_json = [] for index, img_dict in enumerate(imgs): img = img_dict['img'] page_width = img_dict['width'] page_height = img_dict['height'] result = ocr_engine(img) spans = [] for line in result: line.pop('img') ''' 为paddle输出适配type no. title: 0 # 标题 text: 1 # 文本 header: 2 # abandon footer: 2 # abandon reference: 1 # 文本 or abandon equation: 8 # 行间公式 block equation: 14 # 行间公式 text figure: 3 # 图片 figure_caption: 4 # 图片描述 table: 5 # 表格 table_caption: 6 # 表格描述 ''' if line['type'] == 'title': line['category_id'] = 0 elif line['type'] in ['text', 'reference']: line['category_id'] = 1 elif line['type'] == 'figure': line['category_id'] = 3 elif line['type'] == 'figure_caption': line['category_id'] = 4 elif line['type'] == 'table': line['category_id'] = 5 elif line['type'] == 'table_caption': line['category_id'] = 6 elif line['type'] == 'equation': line['category_id'] = 8 elif line['type'] in ['header', 'footer']: line['category_id'] = 2 else: logger.warning(f"unknown type: {line['type']}") line['score'] = 0.5 + random.random() * 0.5 res = line.pop('res', None) if res is not None and len(res) > 0: for span in res: new_span = {'category_id': 15, 'bbox': region_to_bbox(span['text_region']), 'score': span['confidence'], 'text': span['text'] } spans.append(new_span) if len(spans) > 0: result.extend(spans) result = remove_duplicates_dicts(result) page_info = { "page_no": index, "height": page_height, "width": page_width } page_dict = { "layout_dets": result, "page_info": page_info } model_json.append(page_dict) return model_json