# MinerU v2.0 Multi-GPU Server [简体中文](README_zh.md) A streamlined multi-GPU server implementation. ## Quick Start ### 1. install MinerU ```bash pip install --upgrade pip pip install uv uv pip install -U "mineru[core]" uv pip install litserve aiohttp loguru ``` ### 2. Start the Server ```bash python server.py ``` ### 3. Start the Client ```bash python client.py ``` Now, pdf files under folder [demo](../../demo/) will be processed in parallel. Assuming you have 2 gpus, if you change the `workers_per_device` to `2`, 4 pdf files will be processed at the same time! ## Customize ### Server Example showing how to start the server with custom settings: ```python server = ls.LitServer( MinerUAPI(output_dir='/tmp/mineru_output'), accelerator='auto', # You can specify 'cuda' devices='auto', # "auto" uses all available GPUs workers_per_device=1, # One worker instance per GPU timeout=False # Disable timeout for long processing ) server.run(port=8000, generate_client_file=False) ``` ### Client The client supports both synchronous and asynchronous processing: ```python import asyncio import aiohttp from client import mineru_parse_async async def process_documents(): async with aiohttp.ClientSession() as session: # Basic usage result = await mineru_parse_async(session, 'document.pdf') # With custom options result = await mineru_parse_async( session, 'document.pdf', backend='pipeline', lang='ch', formula_enable=True, table_enable=True ) # Run async processing asyncio.run(process_documents()) ``` ### Concurrent Processing Process multiple files simultaneously: ```python async def process_multiple_files(): files = ['doc1.pdf', 'doc2.pdf', 'doc3.pdf'] async with aiohttp.ClientSession() as session: tasks = [mineru_parse_async(session, file) for file in files] results = await asyncio.gather(*tasks) return results ```