""" 布局处理的公共工具类 包含两个MagicModel类中重复使用的方法和逻辑 """ from typing import List, Dict, Any, Union from mineru.utils.boxbase import bbox_relative_pos, calculate_iou, bbox_distance, is_in def reduct_overlap(bboxes: List[Dict[str, Any]]) -> List[Dict[str, Any]]: """ 去除重叠的bbox,保留不被其他bbox包含的bbox Args: bboxes: 包含bbox信息的字典列表 Returns: 去重后的bbox列表 """ N = len(bboxes) keep = [True] * N for i in range(N): for j in range(N): if i == j: continue if is_in(bboxes[i]['bbox'], bboxes[j]['bbox']): keep[i] = False return [bboxes[i] for i in range(N) if keep[i]] def bbox_distance_with_relative_check(bbox1: List[int], bbox2: List[int]) -> float: """ 计算两个bbox之间的距离,考虑相对位置约束 Args: bbox1: 第一个bbox [x1, y1, x2, y2] bbox2: 第二个bbox [x1, y1, x2, y2] Returns: 距离值,如果不满足条件返回无穷大 """ left, right, bottom, top = bbox_relative_pos(bbox1, bbox2) flags = [left, right, bottom, top] count = sum([1 if v else 0 for v in flags]) if count > 1: return float('inf') if left or right: l1 = bbox1[3] - bbox1[1] l2 = bbox2[3] - bbox2[1] else: l1 = bbox1[2] - bbox1[0] l2 = bbox2[2] - bbox2[0] if l2 > l1 and (l2 - l1) / l1 > 0.3: return float('inf') return bbox_distance(bbox1, bbox2) def tie_up_category_by_distance_v3( data_source: Union[List[Dict], Dict], subject_category_filter, object_category_filter, extract_bbox_func=None, extract_score_func=None, create_item_func=None ) -> List[Dict[str, Any]]: """ 基于距离关联不同类型的区块/元素 Args: data_source: 数据源,可以是列表或包含layout_dets的字典 subject_category_filter: 主体类别过滤函数或值 object_category_filter: 对象类别过滤函数或值 extract_bbox_func: 提取bbox的函数,默认使用'bbox'键 extract_score_func: 提取score的函数,默认使用'score'键 create_item_func: 创建返回项的函数 Returns: 关联结果列表 """ # 默认函数 if extract_bbox_func is None: extract_bbox_func = lambda x: x['bbox'] if extract_score_func is None: extract_score_func = lambda x: x['score'] if create_item_func is None: create_item_func = lambda x: {'bbox': extract_bbox_func(x), 'score': extract_score_func(x)} # 处理数据源 if isinstance(data_source, dict) and 'layout_dets' in data_source: items = data_source['layout_dets'] else: items = data_source # 过滤主体和对象 if callable(subject_category_filter): subjects = list(filter(subject_category_filter, items)) else: subjects = list(filter(lambda x: x.get('category_id') == subject_category_filter or x.get('type') == subject_category_filter, items)) if callable(object_category_filter): objects = list(filter(object_category_filter, items)) else: objects = list(filter(lambda x: x.get('category_id') == object_category_filter or x.get('type') == object_category_filter, items)) # 转换为标准格式并去重 subjects = reduct_overlap([create_item_func(x) for x in subjects]) objects = reduct_overlap([create_item_func(x) for x in objects]) ret = [] N, M = len(subjects), len(objects) subjects.sort(key=lambda x: extract_bbox_func(x)[0] ** 2 + extract_bbox_func(x)[1] ** 2) objects.sort(key=lambda x: extract_bbox_func(x)[0] ** 2 + extract_bbox_func(x)[1] ** 2) OBJ_IDX_OFFSET = 10000 SUB_BIT_KIND, OBJ_BIT_KIND = 0, 1 all_boxes_with_idx = [(i, SUB_BIT_KIND, extract_bbox_func(sub)[0], extract_bbox_func(sub)[1]) for i, sub in enumerate(subjects)] + \ [(i + OBJ_IDX_OFFSET, OBJ_BIT_KIND, extract_bbox_func(obj)[0], extract_bbox_func(obj)[1]) for i, obj in enumerate(objects)] seen_idx = set() seen_sub_idx = set() while N > len(seen_sub_idx): candidates = [] for idx, kind, x0, y0 in all_boxes_with_idx: if idx in seen_idx: continue candidates.append((idx, kind, x0, y0)) if len(candidates) == 0: break left_x = min([v[2] for v in candidates]) top_y = min([v[3] for v in candidates]) candidates.sort(key=lambda x: (x[2] - left_x) ** 2 + (x[3] - top_y) ** 2) fst_idx, fst_kind, left_x, top_y = candidates[0] fst_bbox = extract_bbox_func(subjects[fst_idx]) if fst_kind == SUB_BIT_KIND else extract_bbox_func(objects[fst_idx - OBJ_IDX_OFFSET]) candidates.sort( key=lambda x: bbox_distance(fst_bbox, extract_bbox_func(subjects[x[0]])) if x[1] == SUB_BIT_KIND else bbox_distance( fst_bbox, extract_bbox_func(objects[x[0] - OBJ_IDX_OFFSET]))) nxt = None for i in range(1, len(candidates)): if candidates[i][1] ^ fst_kind == 1: nxt = candidates[i] break if nxt is None: break if fst_kind == SUB_BIT_KIND: sub_idx, obj_idx = fst_idx, nxt[0] - OBJ_IDX_OFFSET else: sub_idx, obj_idx = nxt[0], fst_idx - OBJ_IDX_OFFSET pair_dis = bbox_distance(extract_bbox_func(subjects[sub_idx]), extract_bbox_func(objects[obj_idx])) nearest_dis = float('inf') for i in range(N): # 取消原先算法中 1对1 匹配的偏置 # if i in seen_idx or i == sub_idx:continue nearest_dis = min(nearest_dis, bbox_distance(extract_bbox_func(subjects[i]), extract_bbox_func(objects[obj_idx]))) if pair_dis >= 3 * nearest_dis: seen_idx.add(sub_idx) continue seen_idx.add(sub_idx) seen_idx.add(obj_idx + OBJ_IDX_OFFSET) seen_sub_idx.add(sub_idx) ret.append({ 'sub_bbox': subjects[sub_idx], 'obj_bboxes': [objects[obj_idx]], 'sub_idx': sub_idx, }) # 处理剩余的对象 for i in range(len(objects)): j = i + OBJ_IDX_OFFSET if j in seen_idx: continue seen_idx.add(j) nearest_dis, nearest_sub_idx = float('inf'), -1 for k in range(len(subjects)): dis = bbox_distance(extract_bbox_func(objects[i]), extract_bbox_func(subjects[k])) if dis < nearest_dis: nearest_dis = dis nearest_sub_idx = k for k in range(len(subjects)): if k != nearest_sub_idx: continue if k in seen_sub_idx: for kk in range(len(ret)): if ret[kk]['sub_idx'] == k: ret[kk]['obj_bboxes'].append(objects[i]) break else: ret.append({ 'sub_bbox': subjects[k], 'obj_bboxes': [objects[i]], 'sub_idx': k, }) seen_sub_idx.add(k) seen_idx.add(k) # 处理剩余的主体 for i in range(len(subjects)): if i in seen_sub_idx: continue ret.append({ 'sub_bbox': subjects[i], 'obj_bboxes': [], 'sub_idx': i, }) return ret def remove_high_iou_low_confidence(layout_dets: List[Dict], iou_threshold: float = 0.9): """ 删除高IOU且置信度较低的检测结果 Args: layout_dets: 布局检测结果列表 iou_threshold: IOU阈值 """ need_remove_list = [] for i in range(len(layout_dets)): for j in range(i + 1, len(layout_dets)): layout_det1 = layout_dets[i] layout_det2 = layout_dets[j] if calculate_iou(layout_det1['bbox'], layout_det2['bbox']) > iou_threshold: layout_det_need_remove = layout_det1 if layout_det1['score'] < layout_det2['score'] else layout_det2 if layout_det_need_remove not in need_remove_list: need_remove_list.append(layout_det_need_remove) for need_remove in need_remove_list: if need_remove in layout_dets: layout_dets.remove(need_remove) def remove_low_confidence(layout_dets: List[Dict], confidence_threshold: float = 0.05): """ 删除置信度特别低的检测结果 Args: layout_dets: 布局检测结果列表 confidence_threshold: 置信度阈值 """ need_remove_list = [] for layout_det in layout_dets: if layout_det['score'] <= confidence_threshold: need_remove_list.append(layout_det) for need_remove in need_remove_list: if need_remove in layout_dets: layout_dets.remove(need_remove)