from loguru import logger import os import time from magic_pdf.libs.Constants import * from magic_pdf.model.model_list import AtomicModel os.environ['NO_ALBUMENTATIONS_UPDATE'] = '1' # 禁止albumentations检查更新 try: import cv2 import yaml import argparse import numpy as np import torch import torchtext if torchtext.__version__ >= "0.18.0": torchtext.disable_torchtext_deprecation_warning() from PIL import Image from torchvision import transforms from torch.utils.data import Dataset, DataLoader from ultralytics import YOLO from unimernet.common.config import Config import unimernet.tasks as tasks from unimernet.processors import load_processor except ImportError as e: logger.exception(e) logger.error( 'Required dependency not installed, please install by \n' '"pip install magic-pdf[full] --extra-index-url https://myhloli.github.io/wheels/"') exit(1) from magic_pdf.model.pek_sub_modules.layoutlmv3.model_init import Layoutlmv3_Predictor from magic_pdf.model.pek_sub_modules.post_process import get_croped_image, latex_rm_whitespace from magic_pdf.model.pek_sub_modules.self_modify import ModifiedPaddleOCR from magic_pdf.model.pek_sub_modules.structeqtable.StructTableModel import StructTableModel from magic_pdf.model.ppTableModel import ppTableModel def table_model_init(table_model_type, model_path, max_time, _device_='cpu'): if table_model_type == STRUCT_EQTABLE: table_model = StructTableModel(model_path, max_time=max_time, device=_device_) else: config = { "model_dir": model_path, "device": _device_ } table_model = ppTableModel(config) return table_model def mfd_model_init(weight): mfd_model = YOLO(weight) return mfd_model def mfr_model_init(weight_dir, cfg_path, _device_='cpu'): args = argparse.Namespace(cfg_path=cfg_path, options=None) cfg = Config(args) cfg.config.model.pretrained = os.path.join(weight_dir, "pytorch_model.pth") cfg.config.model.model_config.model_name = weight_dir cfg.config.model.tokenizer_config.path = weight_dir task = tasks.setup_task(cfg) model = task.build_model(cfg) model = model.to(_device_) vis_processor = load_processor('formula_image_eval', cfg.config.datasets.formula_rec_eval.vis_processor.eval) mfr_transform = transforms.Compose([vis_processor, ]) return [model, mfr_transform] def layout_model_init(weight, config_file, device): model = Layoutlmv3_Predictor(weight, config_file, device) return model def ocr_model_init(show_log: bool = False, det_db_box_thresh=0.3, lang=None): if lang is not None: model = ModifiedPaddleOCR(show_log=show_log, det_db_box_thresh=det_db_box_thresh, lang=lang) else: model = ModifiedPaddleOCR(show_log=show_log, det_db_box_thresh=det_db_box_thresh) return model class MathDataset(Dataset): def __init__(self, image_paths, transform=None): self.image_paths = image_paths self.transform = transform def __len__(self): return len(self.image_paths) def __getitem__(self, idx): # if not pil image, then convert to pil image if isinstance(self.image_paths[idx], str): raw_image = Image.open(self.image_paths[idx]) else: raw_image = self.image_paths[idx] if self.transform: image = self.transform(raw_image) return image class AtomModelSingleton: _instance = None _models = {} def __new__(cls, *args, **kwargs): if cls._instance is None: cls._instance = super().__new__(cls) return cls._instance def get_atom_model(self, atom_model_name: str, **kwargs): if atom_model_name not in self._models: self._models[atom_model_name] = atom_model_init(model_name=atom_model_name, **kwargs) return self._models[atom_model_name] def atom_model_init(model_name: str, **kwargs): if model_name == AtomicModel.Layout: atom_model = layout_model_init( kwargs.get("layout_weights"), kwargs.get("layout_config_file"), kwargs.get("device") ) elif model_name == AtomicModel.MFD: atom_model = mfd_model_init( kwargs.get("mfd_weights") ) elif model_name == AtomicModel.MFR: atom_model = mfr_model_init( kwargs.get("mfr_weight_dir"), kwargs.get("mfr_cfg_path"), kwargs.get("device") ) elif model_name == AtomicModel.OCR: atom_model = ocr_model_init( kwargs.get("ocr_show_log"), kwargs.get("det_db_box_thresh"), kwargs.get("lang") ) elif model_name == AtomicModel.Table: atom_model = table_model_init( kwargs.get("table_model_type"), kwargs.get("table_model_path"), kwargs.get("table_max_time"), kwargs.get("device") ) else: logger.error("model name not allow") exit(1) return atom_model class CustomPEKModel: def __init__(self, ocr: bool = False, show_log: bool = False, **kwargs): """ ======== model init ======== """ # 获取当前文件(即 pdf_extract_kit.py)的绝对路径 current_file_path = os.path.abspath(__file__) # 获取当前文件所在的目录(model) current_dir = os.path.dirname(current_file_path) # 上一级目录(magic_pdf) root_dir = os.path.dirname(current_dir) # model_config目录 model_config_dir = os.path.join(root_dir, 'resources', 'model_config') # 构建 model_configs.yaml 文件的完整路径 config_path = os.path.join(model_config_dir, 'model_configs.yaml') with open(config_path, "r", encoding='utf-8') as f: self.configs = yaml.load(f, Loader=yaml.FullLoader) # 初始化解析配置 self.apply_layout = kwargs.get("apply_layout", self.configs["config"]["layout"]) self.apply_formula = kwargs.get("apply_formula", self.configs["config"]["formula"]) # table config self.table_config = kwargs.get("table_config", self.configs["config"]["table_config"]) self.apply_table = self.table_config.get("is_table_recog_enable", False) self.table_max_time = self.table_config.get("max_time", TABLE_MAX_TIME_VALUE) self.table_model_type = self.table_config.get("model", TABLE_MASTER) self.apply_ocr = ocr self.lang = kwargs.get("lang", None) logger.info( "DocAnalysis init, this may take some times. apply_layout: {}, apply_formula: {}, apply_ocr: {}, apply_table: {}, lang: {}".format( self.apply_layout, self.apply_formula, self.apply_ocr, self.apply_table, self.lang ) ) assert self.apply_layout, "DocAnalysis must contain layout model." # 初始化解析方案 self.device = kwargs.get("device", self.configs["config"]["device"]) logger.info("using device: {}".format(self.device)) models_dir = kwargs.get("models_dir", os.path.join(root_dir, "resources", "models")) logger.info("using models_dir: {}".format(models_dir)) atom_model_manager = AtomModelSingleton() # 初始化公式识别 if self.apply_formula: # 初始化公式检测模型 # self.mfd_model = mfd_model_init(str(os.path.join(models_dir, self.configs["weights"]["mfd"]))) self.mfd_model = atom_model_manager.get_atom_model( atom_model_name=AtomicModel.MFD, mfd_weights=str(os.path.join(models_dir, self.configs["weights"]["mfd"])) ) # 初始化公式解析模型 mfr_weight_dir = str(os.path.join(models_dir, self.configs["weights"]["mfr"])) mfr_cfg_path = str(os.path.join(model_config_dir, "UniMERNet", "demo.yaml")) # self.mfr_model, mfr_vis_processors = mfr_model_init(mfr_weight_dir, mfr_cfg_path, _device_=self.device) # self.mfr_transform = transforms.Compose([mfr_vis_processors, ]) self.mfr_model, self.mfr_transform = atom_model_manager.get_atom_model( atom_model_name=AtomicModel.MFR, mfr_weight_dir=mfr_weight_dir, mfr_cfg_path=mfr_cfg_path, device=self.device ) # 初始化layout模型 # self.layout_model = Layoutlmv3_Predictor( # str(os.path.join(models_dir, self.configs['weights']['layout'])), # str(os.path.join(model_config_dir, "layoutlmv3", "layoutlmv3_base_inference.yaml")), # device=self.device # ) self.layout_model = atom_model_manager.get_atom_model( atom_model_name=AtomicModel.Layout, layout_weights=str(os.path.join(models_dir, self.configs['weights']['layout'])), layout_config_file=str(os.path.join(model_config_dir, "layoutlmv3", "layoutlmv3_base_inference.yaml")), device=self.device ) # 初始化ocr if self.apply_ocr: # self.ocr_model = ModifiedPaddleOCR(show_log=show_log, det_db_box_thresh=0.3) self.ocr_model = atom_model_manager.get_atom_model( atom_model_name=AtomicModel.OCR, ocr_show_log=show_log, det_db_box_thresh=0.3, lang=self.lang ) # init table model if self.apply_table: table_model_dir = self.configs["weights"][self.table_model_type] # self.table_model = table_model_init(self.table_model_type, str(os.path.join(models_dir, table_model_dir)), # max_time=self.table_max_time, _device_=self.device) self.table_model = atom_model_manager.get_atom_model( atom_model_name=AtomicModel.Table, table_model_type=self.table_model_type, table_model_path=str(os.path.join(models_dir, table_model_dir)), table_max_time=self.table_max_time, device=self.device ) logger.info('DocAnalysis init done!') def __call__(self, image): latex_filling_list = [] mf_image_list = [] # layout检测 layout_start = time.time() layout_res = self.layout_model(image, ignore_catids=[]) layout_cost = round(time.time() - layout_start, 2) logger.info(f"layout detection cost: {layout_cost}") if self.apply_formula: # 公式检测 mfd_res = self.mfd_model.predict(image, imgsz=1888, conf=0.25, iou=0.45, verbose=True)[0] for xyxy, conf, cla in zip(mfd_res.boxes.xyxy.cpu(), mfd_res.boxes.conf.cpu(), mfd_res.boxes.cls.cpu()): xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy] new_item = { 'category_id': 13 + int(cla.item()), 'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax], 'score': round(float(conf.item()), 2), 'latex': '', } layout_res.append(new_item) latex_filling_list.append(new_item) bbox_img = get_croped_image(Image.fromarray(image), [xmin, ymin, xmax, ymax]) mf_image_list.append(bbox_img) # 公式识别 mfr_start = time.time() dataset = MathDataset(mf_image_list, transform=self.mfr_transform) dataloader = DataLoader(dataset, batch_size=64, num_workers=0) mfr_res = [] for mf_img in dataloader: mf_img = mf_img.to(self.device) output = self.mfr_model.generate({'image': mf_img}) mfr_res.extend(output['pred_str']) for res, latex in zip(latex_filling_list, mfr_res): res['latex'] = latex_rm_whitespace(latex) mfr_cost = round(time.time() - mfr_start, 2) logger.info(f"formula nums: {len(mf_image_list)}, mfr time: {mfr_cost}") # Select regions for OCR / formula regions / table regions ocr_res_list = [] table_res_list = [] single_page_mfdetrec_res = [] for res in layout_res: if int(res['category_id']) in [13, 14]: single_page_mfdetrec_res.append({ "bbox": [int(res['poly'][0]), int(res['poly'][1]), int(res['poly'][4]), int(res['poly'][5])], }) elif int(res['category_id']) in [0, 1, 2, 4, 6, 7]: ocr_res_list.append(res) elif int(res['category_id']) in [5]: table_res_list.append(res) # Unified crop img logic def crop_img(input_res, input_pil_img, crop_paste_x=0, crop_paste_y=0): crop_xmin, crop_ymin = int(input_res['poly'][0]), int(input_res['poly'][1]) crop_xmax, crop_ymax = int(input_res['poly'][4]), int(input_res['poly'][5]) # Create a white background with an additional width and height of 50 crop_new_width = crop_xmax - crop_xmin + crop_paste_x * 2 crop_new_height = crop_ymax - crop_ymin + crop_paste_y * 2 return_image = Image.new('RGB', (crop_new_width, crop_new_height), 'white') # Crop image crop_box = (crop_xmin, crop_ymin, crop_xmax, crop_ymax) cropped_img = input_pil_img.crop(crop_box) return_image.paste(cropped_img, (crop_paste_x, crop_paste_y)) return_list = [crop_paste_x, crop_paste_y, crop_xmin, crop_ymin, crop_xmax, crop_ymax, crop_new_width, crop_new_height] return return_image, return_list pil_img = Image.fromarray(image) # ocr识别 if self.apply_ocr: ocr_start = time.time() # Process each area that requires OCR processing for res in ocr_res_list: new_image, useful_list = crop_img(res, pil_img, crop_paste_x=50, crop_paste_y=50) paste_x, paste_y, xmin, ymin, xmax, ymax, new_width, new_height = useful_list # Adjust the coordinates of the formula area adjusted_mfdetrec_res = [] for mf_res in single_page_mfdetrec_res: mf_xmin, mf_ymin, mf_xmax, mf_ymax = mf_res["bbox"] # Adjust the coordinates of the formula area to the coordinates relative to the cropping area x0 = mf_xmin - xmin + paste_x y0 = mf_ymin - ymin + paste_y x1 = mf_xmax - xmin + paste_x y1 = mf_ymax - ymin + paste_y # Filter formula blocks outside the graph if any([x1 < 0, y1 < 0]) or any([x0 > new_width, y0 > new_height]): continue else: adjusted_mfdetrec_res.append({ "bbox": [x0, y0, x1, y1], }) # OCR recognition new_image = cv2.cvtColor(np.asarray(new_image), cv2.COLOR_RGB2BGR) ocr_res = self.ocr_model.ocr(new_image, mfd_res=adjusted_mfdetrec_res)[0] # Integration results if ocr_res: for box_ocr_res in ocr_res: p1, p2, p3, p4 = box_ocr_res[0] text, score = box_ocr_res[1] # Convert the coordinates back to the original coordinate system p1 = [p1[0] - paste_x + xmin, p1[1] - paste_y + ymin] p2 = [p2[0] - paste_x + xmin, p2[1] - paste_y + ymin] p3 = [p3[0] - paste_x + xmin, p3[1] - paste_y + ymin] p4 = [p4[0] - paste_x + xmin, p4[1] - paste_y + ymin] layout_res.append({ 'category_id': 15, 'poly': p1 + p2 + p3 + p4, 'score': round(score, 2), 'text': text, }) ocr_cost = round(time.time() - ocr_start, 2) logger.info(f"ocr cost: {ocr_cost}") # 表格识别 table recognition if self.apply_table: table_start = time.time() for res in table_res_list: new_image, _ = crop_img(res, pil_img) single_table_start_time = time.time() logger.info("------------------table recognition processing begins-----------------") latex_code = None html_code = None if self.table_model_type == STRUCT_EQTABLE: with torch.no_grad(): latex_code = self.table_model.image2latex(new_image)[0] else: html_code = self.table_model.img2html(new_image) run_time = time.time() - single_table_start_time logger.info(f"------------table recognition processing ends within {run_time}s-----") if run_time > self.table_max_time: logger.warning(f"------------table recognition processing exceeds max time {self.table_max_time}s----------") # 判断是否返回正常 if latex_code: expected_ending = latex_code.strip().endswith('end{tabular}') or latex_code.strip().endswith( 'end{table}') if expected_ending: res["latex"] = latex_code else: logger.warning(f"------------table recognition processing fails----------") elif html_code: res["html"] = html_code else: logger.warning(f"------------table recognition processing fails----------") table_cost = round(time.time() - table_start, 2) logger.info(f"table cost: {table_cost}") return layout_res