import statistics import time from loguru import logger from typing import List import torch from magic_pdf.libs.commons import fitz, get_delta_time from magic_pdf.libs.convert_utils import dict_to_list from magic_pdf.libs.drop_reason import DropReason from magic_pdf.libs.hash_utils import compute_md5 from magic_pdf.libs.local_math import float_equal from magic_pdf.libs.ocr_content_type import ContentType from magic_pdf.model.magic_model import MagicModel from magic_pdf.pre_proc.citationmarker_remove import remove_citation_marker from magic_pdf.pre_proc.construct_page_dict import ocr_construct_page_component_v2 from magic_pdf.pre_proc.cut_image import ocr_cut_image_and_table from magic_pdf.pre_proc.equations_replace import remove_chars_in_text_blocks, replace_equations_in_textblock, \ combine_chars_to_pymudict from magic_pdf.pre_proc.ocr_detect_all_bboxes import ocr_prepare_bboxes_for_layout_split_v2 from magic_pdf.pre_proc.ocr_dict_merge import fill_spans_in_blocks, fix_block_spans, fix_discarded_block from magic_pdf.pre_proc.ocr_span_list_modify import remove_overlaps_min_spans, get_qa_need_list_v2, \ remove_overlaps_low_confidence_spans from magic_pdf.pre_proc.resolve_bbox_conflict import check_useful_block_horizontal_overlap def remove_horizontal_overlap_block_which_smaller(all_bboxes): useful_blocks = [] for bbox in all_bboxes: useful_blocks.append({ "bbox": bbox[:4] }) is_useful_block_horz_overlap, smaller_bbox, bigger_bbox = check_useful_block_horizontal_overlap(useful_blocks) if is_useful_block_horz_overlap: logger.warning( f"skip this page, reason: {DropReason.USEFUL_BLOCK_HOR_OVERLAP}, smaller bbox is {smaller_bbox}, bigger bbox is {bigger_bbox}") for bbox in all_bboxes.copy(): if smaller_bbox == bbox[:4]: all_bboxes.remove(bbox) return is_useful_block_horz_overlap, all_bboxes def __replace_STX_ETX(text_str:str): """ Replace \u0002 and \u0003, as these characters become garbled when extracted using pymupdf. In fact, they were originally quotation marks. Drawback: This issue is only observed in English text; it has not been found in Chinese text so far. Args: text_str (str): raw text Returns: _type_: replaced text """ if text_str: s = text_str.replace('\u0002', "'") s = s.replace("\u0003", "'") return s return text_str def txt_spans_extract(pdf_page, inline_equations, interline_equations): text_raw_blocks = pdf_page.get_text("dict", flags=fitz.TEXTFLAGS_TEXT)["blocks"] char_level_text_blocks = pdf_page.get_text("rawdict", flags=fitz.TEXTFLAGS_TEXT)[ "blocks" ] text_blocks = combine_chars_to_pymudict(text_raw_blocks, char_level_text_blocks) text_blocks = replace_equations_in_textblock( text_blocks, inline_equations, interline_equations ) text_blocks = remove_citation_marker(text_blocks) text_blocks = remove_chars_in_text_blocks(text_blocks) spans = [] for v in text_blocks: for line in v["lines"]: for span in line["spans"]: bbox = span["bbox"] if float_equal(bbox[0], bbox[2]) or float_equal(bbox[1], bbox[3]): continue if span.get('type') not in (ContentType.InlineEquation, ContentType.InterlineEquation): spans.append( { "bbox": list(span["bbox"]), "content": __replace_STX_ETX(span["text"]), "type": ContentType.Text, "score": 1.0, } ) return spans def replace_text_span(pymu_spans, ocr_spans): return list(filter(lambda x: x["type"] != ContentType.Text, ocr_spans)) + pymu_spans def model_init(model_name: str): from transformers import LayoutLMv3ForTokenClassification device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if model_name == "layoutreader": model = ( LayoutLMv3ForTokenClassification.from_pretrained("hantian/layoutreader") # .bfloat16() .to(device) .eval() ) else: logger.error("model name not allow") exit(1) return model class ModelSingleton: _instance = None _models = {} def __new__(cls, *args, **kwargs): if cls._instance is None: cls._instance = super().__new__(cls) return cls._instance def get_model(self, model_name: str): if model_name not in self._models: self._models[model_name] = model_init(model_name=model_name) return self._models[model_name] def do_predict(boxes: List[List[int]], model) -> List[int]: from magic_pdf.v3.helpers import prepare_inputs, boxes2inputs, parse_logits inputs = boxes2inputs(boxes) inputs = prepare_inputs(inputs, model) logits = model(**inputs).logits.cpu().squeeze(0) return parse_logits(logits, len(boxes)) def parse_page_core(pdf_docs, magic_model, page_id, pdf_bytes_md5, imageWriter, parse_mode): need_drop = False drop_reason = [] '''从magic_model对象中获取后面会用到的区块信息''' img_blocks = magic_model.get_imgs(page_id) table_blocks = magic_model.get_tables(page_id) discarded_blocks = magic_model.get_discarded(page_id) text_blocks = magic_model.get_text_blocks(page_id) title_blocks = magic_model.get_title_blocks(page_id) inline_equations, interline_equations, interline_equation_blocks = magic_model.get_equations(page_id) page_w, page_h = magic_model.get_page_size(page_id) spans = magic_model.get_all_spans(page_id) '''根据parse_mode,构造spans''' if parse_mode == "txt": """ocr 中文本类的 span 用 pymu spans 替换!""" pymu_spans = txt_spans_extract( pdf_docs[page_id], inline_equations, interline_equations ) spans = replace_text_span(pymu_spans, spans) elif parse_mode == "ocr": pass else: raise Exception("parse_mode must be txt or ocr") '''删除重叠spans中置信度较低的那些''' spans, dropped_spans_by_confidence = remove_overlaps_low_confidence_spans(spans) '''删除重叠spans中较小的那些''' spans, dropped_spans_by_span_overlap = remove_overlaps_min_spans(spans) '''对image和table截图''' spans = ocr_cut_image_and_table(spans, pdf_docs[page_id], page_id, pdf_bytes_md5, imageWriter) '''将所有区块的bbox整理到一起''' # interline_equation_blocks参数不够准,后面切换到interline_equations上 interline_equation_blocks = [] if len(interline_equation_blocks) > 0: all_bboxes, all_discarded_blocks = ocr_prepare_bboxes_for_layout_split_v2( img_blocks, table_blocks, discarded_blocks, text_blocks, title_blocks, interline_equation_blocks, page_w, page_h) else: all_bboxes, all_discarded_blocks = ocr_prepare_bboxes_for_layout_split_v2( img_blocks, table_blocks, discarded_blocks, text_blocks, title_blocks, interline_equations, page_w, page_h) '''先处理不需要排版的discarded_blocks''' discarded_block_with_spans, spans = fill_spans_in_blocks(all_discarded_blocks, spans, 0.4) fix_discarded_blocks = fix_discarded_block(discarded_block_with_spans) '''如果当前页面没有bbox则跳过''' if len(all_bboxes) == 0: logger.warning(f"skip this page, not found useful bbox, page_id: {page_id}") return ocr_construct_page_component_v2([], [], page_id, page_w, page_h, [], [], [], interline_equations, fix_discarded_blocks, need_drop, drop_reason) '''将span填入排好序的blocks中''' block_with_spans, spans = fill_spans_in_blocks(all_bboxes, spans, 0.3) '''对block进行fix操作''' fix_blocks = fix_block_spans(block_with_spans, img_blocks, table_blocks) '''获取所有line并对line排序''' page_line_list = [] for block in fix_blocks: if block['type'] in ['text', 'title', 'interline_equation']: for line in block['lines']: bbox = line['bbox'] page_line_list.append(bbox) elif block['type'] in ['table', 'image']: # 简单的把表和图都当成一个line处理 bbox = block['bbox'] page_line_list.append(bbox) # 使用layoutreader排序 x_scale = 1000.0 / page_w y_scale = 1000.0 / page_h boxes = [] # logger.info(f"Scale: {x_scale}, {y_scale}, Boxes len: {len(page_line_list)}") for left, top, right, bottom in page_line_list: left = round(left * x_scale) top = round(top * y_scale) right = round(right * x_scale) bottom = round(bottom * y_scale) assert ( 1000 >= right >= left >= 0 and 1000 >= bottom >= top >= 0 ), f"Invalid box. right: {right}, left: {left}, bottom: {bottom}, top: {top}" boxes.append([left, top, right, bottom]) model_manager = ModelSingleton() model = model_manager.get_model("layoutreader") layoutreader_start = time.time() with torch.no_grad(): orders = do_predict(boxes, model) # logger.info(f"layoutreader cost time{time.time() - layoutreader_start}") sorted_bboxes = [page_line_list[i] for i in orders] '''根据line的中位数算block的序列关系''' block_without_lines = [] for block in fix_blocks: if block['type'] in ['text', 'title', 'interline_equation']: line_index_list = [] if len(block['lines']) == 0: block_without_lines.append(block) continue else: for line in block['lines']: line['index'] = sorted_bboxes.index(line['bbox']) line_index_list.append(line['index']) median_value = statistics.median(line_index_list) block['index'] = median_value elif block['type'] in ['table', 'image']: block['index'] = sorted_bboxes.index(block['bbox']) '''移除没有line的block''' for block in block_without_lines: fix_blocks.remove(block) '''重排block''' sorted_blocks = sorted(fix_blocks, key=lambda b: b['index']) '''获取QA需要外置的list''' images, tables, interline_equations = get_qa_need_list_v2(sorted_blocks) '''构造pdf_info_dict''' page_info = ocr_construct_page_component_v2(sorted_blocks, [], page_id, page_w, page_h, [], images, tables, interline_equations, fix_discarded_blocks, need_drop, drop_reason) return page_info def clean_memory(): import gc if torch.cuda.is_available(): torch.cuda.empty_cache() torch.cuda.ipc_collect() gc.collect() def pdf_parse_union(pdf_bytes, model_list, imageWriter, parse_mode, start_page_id=0, end_page_id=None, debug_mode=False, ): pdf_bytes_md5 = compute_md5(pdf_bytes) pdf_docs = fitz.open("pdf", pdf_bytes) '''初始化空的pdf_info_dict''' pdf_info_dict = {} '''用model_list和docs对象初始化magic_model''' magic_model = MagicModel(model_list, pdf_docs) '''根据输入的起始范围解析pdf''' # end_page_id = end_page_id if end_page_id else len(pdf_docs) - 1 end_page_id = end_page_id if end_page_id is not None and end_page_id >= 0 else len(pdf_docs) - 1 if end_page_id > len(pdf_docs) - 1: logger.warning("end_page_id is out of range, use pdf_docs length") end_page_id = len(pdf_docs) - 1 '''初始化启动时间''' start_time = time.time() for page_id, page in enumerate(pdf_docs): '''debug时输出每页解析的耗时''' if debug_mode: time_now = time.time() logger.info( f"page_id: {page_id}, last_page_cost_time: {get_delta_time(start_time)}" ) start_time = time_now '''解析pdf中的每一页''' if start_page_id <= page_id <= end_page_id: page_info = parse_page_core(pdf_docs, magic_model, page_id, pdf_bytes_md5, imageWriter, parse_mode) else: page_w = page.rect.width page_h = page.rect.height page_info = ocr_construct_page_component_v2([], [], page_id, page_w, page_h, [], [], [], [], [], True, "skip page") pdf_info_dict[f"page_{page_id}"] = page_info """分段""" # para_split(pdf_info_dict, debug_mode=debug_mode) for page_num, page in pdf_info_dict.items(): page['para_blocks'] = page['preproc_blocks'] """dict转list""" pdf_info_list = dict_to_list(pdf_info_dict) new_pdf_info_dict = { "pdf_info": pdf_info_list, } clean_memory() return new_pdf_info_dict if __name__ == '__main__': pass