""" 用户输入: model数组,每个元素代表一个页面 pdf在s3的路径 截图保存的s3位置 然后: 1)根据s3路径,调用spark集群的api,拿到ak,sk,endpoint,构造出s3PDFReader 2)根据用户输入的s3地址,调用spark集群的api,拿到ak,sk,endpoint,构造出s3ImageWriter 其余部分至于构造s3cli, 获取ak,sk都在code-clean里写代码完成。不要反向依赖!!! """ import re from loguru import logger from magic_pdf.libs.commons import get_version from magic_pdf.rw import AbsReaderWriter from magic_pdf.pdf_parse_by_ocr_v2 import parse_pdf_by_ocr from magic_pdf.pdf_parse_by_txt_v2 import parse_pdf_by_txt PARSE_TYPE_TXT = "txt" PARSE_TYPE_OCR = "ocr" def parse_txt_pdf(pdf_bytes: bytes, pdf_models: list, imageWriter: AbsReaderWriter, is_debug=False, start_page=0, *args, **kwargs): """ 解析文本类pdf """ pdf_info_dict = parse_pdf_by_txt( pdf_bytes, pdf_models, imageWriter, start_page_id=start_page, debug_mode=is_debug, ) pdf_info_dict["_parse_type"] = PARSE_TYPE_TXT pdf_info_dict["_version_name"] = get_version() return pdf_info_dict def parse_ocr_pdf(pdf_bytes: bytes, pdf_models: list, imageWriter: AbsReaderWriter, is_debug=False, start_page=0, *args, **kwargs): """ 解析ocr类pdf """ pdf_info_dict = parse_pdf_by_ocr( pdf_bytes, pdf_models, imageWriter, start_page_id=start_page, debug_mode=is_debug, ) pdf_info_dict["_parse_type"] = PARSE_TYPE_OCR pdf_info_dict["_version_name"] = get_version() return pdf_info_dict def parse_union_pdf(pdf_bytes: bytes, pdf_models: list, imageWriter: AbsReaderWriter, is_debug=False, start_page=0, *args, **kwargs): """ ocr和文本混合的pdf,全部解析出来 """ def parse_pdf(method): try: return method( pdf_bytes, pdf_models, imageWriter, start_page_id=start_page, debug_mode=is_debug, ) except Exception as e: logger.exception(e) return None pdf_info_dict = parse_pdf(parse_pdf_by_txt) text_all = "" for page_dict in pdf_info_dict['pdf_info']: for para_block in page_dict['para_blocks']: if para_block['type'] in ['title', 'text']: for line in para_block['lines']: for span in line['spans']: text_all += span['content'] def calculate_not_common_character_rate(text): garbage_regex = re.compile(r'[^\u4e00-\u9fa5\u0030-\u0039\u0041-\u005a\u0061-\u007a\u3000-\u303f\uff00-\uffef]') # 计算乱码字符的数量 garbage_count = len(garbage_regex.findall(text)) total = len(text) if total == 0: return 0 # 避免除以零的错误 return garbage_count / total def calculate_not_printable_rate(text): printable = sum(1 for c in text if c.isprintable()) total = len(text) if total == 0: return 0 # 避免除以零的错误 return (total - printable) / total # not_common_character_rate = calculate_not_common_character_rate(text_all) not_printable_rate = calculate_not_printable_rate(text_all) # 测试乱码pdf,not_common_character_rate > 0.95, not_printable_rate > 0.15 # not_common_character_rate对小语种可能会有误伤,not_printable_rate对小语种较为友好 if pdf_info_dict is None or pdf_info_dict.get("_need_drop", False) or not_printable_rate > 0.1: logger.warning(f"parse_pdf_by_txt drop or error or garbled_rate too large, switch to parse_pdf_by_ocr") pdf_info_dict = parse_pdf(parse_pdf_by_ocr) if pdf_info_dict is None: raise Exception("Both parse_pdf_by_txt and parse_pdf_by_ocr failed.") else: pdf_info_dict["_parse_type"] = PARSE_TYPE_OCR else: pdf_info_dict["_parse_type"] = PARSE_TYPE_TXT pdf_info_dict["_version_name"] = get_version() return pdf_info_dict