import random import fitz import cv2 from paddleocr import PPStructure from PIL import Image from loguru import logger import numpy as np def region_to_bbox(region): x0 = region[0][0] y0 = region[0][1] x1 = region[2][0] y1 = region[2][1] return [x0, y0, x1, y1] def dict_compare(d1, d2): return d1.items() == d2.items() def remove_duplicates_dicts(lst): unique_dicts = [] for dict_item in lst: if not any( dict_compare(dict_item, existing_dict) for existing_dict in unique_dicts ): unique_dicts.append(dict_item) return unique_dicts def load_imags_from_pdf(pdf_bytes: bytes, dpi=200): imgs = [] with fitz.open("pdf", pdf_bytes) as doc: for index in range(0, doc.page_count): page = doc[index] dpi = 200 mat = fitz.Matrix(dpi / 72, dpi / 72) pm = page.get_pixmap(matrix=mat, alpha=False) # if width or height > 2000 pixels, don't enlarge the image # if pm.width > 2000 or pm.height > 2000: # pm = page.get_pixmap(matrix=fitz.Matrix(1, 1), alpha=False) img = Image.frombytes("RGB", [pm.width, pm.height], pm.samples) img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) img_dict = {"img": img, "width": pm.width, "height": pm.height} imgs.append(img_dict) class CustomPaddleModel: def __init___(self, ocr: bool = False, show_log: bool = False): self.model = PPStructure(table=False, ocr=ocr, show_log=show_log) def __call__(self, img): result = self.model(img) spans = [] for line in result: line.pop("img") """ 为paddle输出适配type no. title: 0 # 标题 text: 1 # 文本 header: 2 # abandon footer: 2 # abandon reference: 1 # 文本 or abandon equation: 8 # 行间公式 block equation: 14 # 行间公式 text figure: 3 # 图片 figure_caption: 4 # 图片描述 table: 5 # 表格 table_caption: 6 # 表格描述 """ if line["type"] == "title": line["category_id"] = 0 elif line["type"] in ["text", "reference"]: line["category_id"] = 1 elif line["type"] == "figure": line["category_id"] = 3 elif line["type"] == "figure_caption": line["category_id"] = 4 elif line["type"] == "table": line["category_id"] = 5 elif line["type"] == "table_caption": line["category_id"] = 6 elif line["type"] == "equation": line["category_id"] = 8 elif line["type"] in ["header", "footer"]: line["category_id"] = 2 else: logger.warning(f"unknown type: {line['type']}") # 兼容不输出score的paddleocr版本 if line.get("score") is None: line["score"] = 0.5 + random.random() * 0.5 res = line.pop("res", None) if res is not None and len(res) > 0: for span in res: new_span = { "category_id": 15, "bbox": region_to_bbox(span["text_region"]), "score": span["confidence"], "text": span["text"], } spans.append(new_span) if len(spans) > 0: result.extend(spans) result = remove_duplicates_dicts(result) return result def doc_analyze(pdf_bytes: bytes, ocr: bool = False, show_log: bool = False): imgs = load_imags_from_pdf(pdf_bytes) custom_paddle = CustomPaddleModel() model_json = [] for index, img_dict in enumerate(imgs): img = img_dict["img"] page_width = img_dict["width"] page_height = img_dict["height"] result = custom_paddle(img) page_info = {"page_no": index, "height": page_height, "width": page_width} page_dict = {"layout_dets": result, "page_info": page_info} model_json.append(page_dict) return model_json