import html
import cv2
from loguru import logger
from tqdm import tqdm
from collections import defaultdict
import numpy as np
from .model_init import AtomModelSingleton
from .model_list import AtomicModel
from ...utils.config_reader import get_formula_enable, get_table_enable
from ...utils.model_utils import crop_img, get_res_list_from_layout_res, clean_vram
from ...utils.ocr_utils import merge_det_boxes, update_det_boxes, sorted_boxes
from ...utils.ocr_utils import get_adjusted_mfdetrec_res, get_ocr_result_list, OcrConfidence, get_rotate_crop_image
from ...utils.pdf_image_tools import get_crop_np_img
YOLO_LAYOUT_BASE_BATCH_SIZE = 1
MFD_BASE_BATCH_SIZE = 1
MFR_BASE_BATCH_SIZE = 16
OCR_DET_BASE_BATCH_SIZE = 16
TABLE_ORI_CLS_BATCH_SIZE = 16
TABLE_Wired_Wireless_CLS_BATCH_SIZE = 16
class BatchAnalyze:
def __init__(self, model_manager, batch_ratio: int, formula_enable, table_enable, enable_ocr_det_batch: bool = True):
self.batch_ratio = batch_ratio
self.formula_enable = get_formula_enable(formula_enable)
self.table_enable = get_table_enable(table_enable)
self.model_manager = model_manager
self.enable_ocr_det_batch = enable_ocr_det_batch
def __call__(self, images_with_extra_info: list) -> list:
if len(images_with_extra_info) == 0:
return []
images_layout_res = []
self.model = self.model_manager.get_model(
lang=None,
formula_enable=self.formula_enable,
table_enable=self.table_enable,
)
atom_model_manager = AtomModelSingleton()
pil_images = [image for image, _, _ in images_with_extra_info]
np_images = [np.asarray(image) for image, _, _ in images_with_extra_info]
# doclayout_yolo
images_layout_res += self.model.layout_model.batch_predict(
pil_images, YOLO_LAYOUT_BASE_BATCH_SIZE
)
if self.formula_enable:
# 公式检测
images_mfd_res = self.model.mfd_model.batch_predict(
np_images, MFD_BASE_BATCH_SIZE
)
# 公式识别
images_formula_list = self.model.mfr_model.batch_predict(
images_mfd_res,
np_images,
batch_size=self.batch_ratio * MFR_BASE_BATCH_SIZE,
)
mfr_count = 0
for image_index in range(len(np_images)):
images_layout_res[image_index] += images_formula_list[image_index]
mfr_count += len(images_formula_list[image_index])
# 清理显存
clean_vram(self.model.device, vram_threshold=8)
ocr_res_list_all_page = []
table_res_list_all_page = []
for index in range(len(np_images)):
_, ocr_enable, _lang = images_with_extra_info[index]
layout_res = images_layout_res[index]
np_img = np_images[index]
ocr_res_list, table_res_list, single_page_mfdetrec_res = (
get_res_list_from_layout_res(layout_res)
)
ocr_res_list_all_page.append({'ocr_res_list':ocr_res_list,
'lang':_lang,
'ocr_enable':ocr_enable,
'np_img':np_img,
'single_page_mfdetrec_res':single_page_mfdetrec_res,
'layout_res':layout_res,
})
for table_res in table_res_list:
# table_img, _ = crop_img(table_res, pil_img)
# bbox = (241, 208, 1475, 2019)
scale = 10/3
# scale = 1
crop_xmin, crop_ymin = int(table_res['poly'][0]), int(table_res['poly'][1])
crop_xmax, crop_ymax = int(table_res['poly'][4]), int(table_res['poly'][5])
bbox = (int(crop_xmin/scale), int(crop_ymin/scale), int(crop_xmax/scale), int(crop_ymax/scale))
table_img = get_crop_np_img(bbox, np_img, scale=scale)
table_res_list_all_page.append({'table_res':table_res,
'lang':_lang,
'table_img':table_img,
})
# 表格识别 table recognition
if self.table_enable:
# 图片旋转批量处理
img_orientation_cls_model = atom_model_manager.get_atom_model(
atom_model_name=AtomicModel.ImgOrientationCls,
)
try:
img_orientation_cls_model.batch_predict(table_res_list_all_page,
det_batch_size=self.batch_ratio * OCR_DET_BASE_BATCH_SIZE,
batch_size=TABLE_ORI_CLS_BATCH_SIZE)
except Exception as e:
logger.warning(
f"Image orientation classification failed: {e}, using original image"
)
# 表格分类
table_cls_model = atom_model_manager.get_atom_model(
atom_model_name=AtomicModel.TableCls,
)
try:
table_cls_model.batch_predict(table_res_list_all_page,
batch_size=TABLE_Wired_Wireless_CLS_BATCH_SIZE)
except Exception as e:
logger.warning(
f"Table classification failed: {e}, using default model"
)
# OCR det 过程,顺序执行
rec_img_lang_group = defaultdict(list)
det_ocr_engine = atom_model_manager.get_atom_model(
atom_model_name=AtomicModel.OCR,
det_db_box_thresh=0.5,
det_db_unclip_ratio=1.6,
enable_merge_det_boxes=False,
)
for index, table_res_dict in enumerate(
tqdm(table_res_list_all_page, desc="Table-ocr det")
):
bgr_image = cv2.cvtColor(table_res_dict["table_img"], cv2.COLOR_RGB2BGR)
ocr_result = det_ocr_engine.ocr(bgr_image, rec=False)[0]
# 构造需要 OCR 识别的图片字典,包括cropped_img, dt_box, table_id,并按照语言进行分组
for dt_box in ocr_result:
rec_img_lang_group[_lang].append(
{
"cropped_img": get_rotate_crop_image(
bgr_image, np.asarray(dt_box, dtype=np.float32)
),
"dt_box": np.asarray(dt_box, dtype=np.float32),
"table_id": index,
}
)
# OCR rec,按照语言分批处理
for _lang, rec_img_list in rec_img_lang_group.items():
ocr_engine = atom_model_manager.get_atom_model(
atom_model_name=AtomicModel.OCR,
det_db_box_thresh=0.5,
det_db_unclip_ratio=1.6,
lang=_lang,
enable_merge_det_boxes=False,
)
cropped_img_list = [item["cropped_img"] for item in rec_img_list]
ocr_res_list = ocr_engine.ocr(cropped_img_list, det=False, tqdm_enable=True, tqdm_desc=f"Table-ocr rec {_lang}")[0]
# 按照 table_id 将识别结果进行回填
for img_dict, ocr_res in zip(rec_img_list, ocr_res_list):
if table_res_list_all_page[img_dict["table_id"]].get("ocr_result"):
table_res_list_all_page[img_dict["table_id"]]["ocr_result"].append(
[img_dict["dt_box"], html.escape(ocr_res[0]), ocr_res[1]]
)
else:
table_res_list_all_page[img_dict["table_id"]]["ocr_result"] = [
[img_dict["dt_box"], html.escape(ocr_res[0]), ocr_res[1]]
]
clean_vram(self.model.device, vram_threshold=8)
# 先对所有表格使用无线表格模型,然后对分类为有线的表格使用有线表格模型
wireless_table_model = atom_model_manager.get_atom_model(
atom_model_name=AtomicModel.WirelessTable,
)
wireless_table_model.batch_predict(table_res_list_all_page)
# for table_res_dict in tqdm(table_res_list_all_page, desc="Table-wireless Predict"):
# if not table_res_dict.get("ocr_result", None):
# continue
# html_code, table_cell_bboxes, logic_points, elapse = wireless_table_model.predict(
# table_res_dict["table_img"], table_res_dict["ocr_result"]
# )
# if html_code:
# table_res_dict["table_res"]["html"] = html_code
# 单独拿出有线表格进行预测
wired_table_res_list = []
for table_res_dict in table_res_list_all_page:
if table_res_dict["table_res"]["cls_label"] == AtomicModel.WiredTable:
wired_table_res_list.append(table_res_dict)
if wired_table_res_list:
for table_res_dict in tqdm(
wired_table_res_list, desc="Table-wired Predict"
):
if not table_res_dict.get("ocr_result", None):
continue
wired_table_model = atom_model_manager.get_atom_model(
atom_model_name=AtomicModel.WiredTable,
lang=table_res_dict["lang"],
)
table_res_dict["table_res"]["html"] = wired_table_model.predict(
table_res_dict["table_img"],
table_res_dict["ocr_result"],
table_res_dict["table_res"].get("html", None)
)
# 表格格式清理
for table_res_dict in table_res_list_all_page:
html_code = table_res_dict["table_res"].get("html", "")
# 检查html_code是否包含'
'
if "" in html_code:
# 选用的内容,放入table_res_dict['table_res']['html']
start_index = html_code.find("")
end_index = html_code.rfind("
") + len("")
table_res_dict["table_res"]["html"] = html_code[start_index:end_index]
# OCR det
if self.enable_ocr_det_batch:
# 批处理模式 - 按语言和分辨率分组
# 收集所有需要OCR检测的裁剪图像
all_cropped_images_info = []
for ocr_res_list_dict in ocr_res_list_all_page:
_lang = ocr_res_list_dict['lang']
for res in ocr_res_list_dict['ocr_res_list']:
new_image, useful_list = crop_img(
res, ocr_res_list_dict['np_img'], crop_paste_x=50, crop_paste_y=50
)
adjusted_mfdetrec_res = get_adjusted_mfdetrec_res(
ocr_res_list_dict['single_page_mfdetrec_res'], useful_list
)
# BGR转换
bgr_image = cv2.cvtColor(new_image, cv2.COLOR_RGB2BGR)
all_cropped_images_info.append((
bgr_image, useful_list, ocr_res_list_dict, res, adjusted_mfdetrec_res, _lang
))
# 按语言分组
lang_groups = defaultdict(list)
for crop_info in all_cropped_images_info:
lang = crop_info[5]
lang_groups[lang].append(crop_info)
# 对每种语言按分辨率分组并批处理
for lang, lang_crop_list in lang_groups.items():
if not lang_crop_list:
continue
# logger.info(f"Processing OCR detection for language {lang} with {len(lang_crop_list)} images")
# 获取OCR模型
ocr_model = atom_model_manager.get_atom_model(
atom_model_name=AtomicModel.OCR,
det_db_box_thresh=0.3,
lang=lang
)
# 按分辨率分组并同时完成padding
# RESOLUTION_GROUP_STRIDE = 32
RESOLUTION_GROUP_STRIDE = 64 # 定义分辨率分组的步进值
resolution_groups = defaultdict(list)
for crop_info in lang_crop_list:
cropped_img = crop_info[0]
h, w = cropped_img.shape[:2]
# 使用更大的分组容差,减少分组数量
# 将尺寸标准化到32的倍数
normalized_h = ((h + RESOLUTION_GROUP_STRIDE) // RESOLUTION_GROUP_STRIDE) * RESOLUTION_GROUP_STRIDE # 向上取整到32的倍数
normalized_w = ((w + RESOLUTION_GROUP_STRIDE) // RESOLUTION_GROUP_STRIDE) * RESOLUTION_GROUP_STRIDE
group_key = (normalized_h, normalized_w)
resolution_groups[group_key].append(crop_info)
# 对每个分辨率组进行批处理
for group_key, group_crops in tqdm(resolution_groups.items(), desc=f"OCR-det {lang}"):
# 计算目标尺寸(组内最大尺寸,向上取整到32的倍数)
max_h = max(crop_info[0].shape[0] for crop_info in group_crops)
max_w = max(crop_info[0].shape[1] for crop_info in group_crops)
target_h = ((max_h + RESOLUTION_GROUP_STRIDE - 1) // RESOLUTION_GROUP_STRIDE) * RESOLUTION_GROUP_STRIDE
target_w = ((max_w + RESOLUTION_GROUP_STRIDE - 1) // RESOLUTION_GROUP_STRIDE) * RESOLUTION_GROUP_STRIDE
# 对所有图像进行padding到统一尺寸
batch_images = []
for crop_info in group_crops:
img = crop_info[0]
h, w = img.shape[:2]
# 创建目标尺寸的白色背景
padded_img = np.ones((target_h, target_w, 3), dtype=np.uint8) * 255
# 将原图像粘贴到左上角
padded_img[:h, :w] = img
batch_images.append(padded_img)
# 批处理检测
det_batch_size = min(len(batch_images), self.batch_ratio * OCR_DET_BASE_BATCH_SIZE) # 增加批处理大小
# logger.debug(f"OCR-det batch: {det_batch_size} images, target size: {target_h}x{target_w}")
batch_results = ocr_model.text_detector.batch_predict(batch_images, det_batch_size)
# 处理批处理结果
for i, (crop_info, (dt_boxes, elapse)) in enumerate(zip(group_crops, batch_results)):
bgr_image, useful_list, ocr_res_list_dict, res, adjusted_mfdetrec_res, _lang = crop_info
if dt_boxes is not None and len(dt_boxes) > 0:
# 直接应用原始OCR流程中的关键处理步骤
# 1. 排序检测框
if len(dt_boxes) > 0:
dt_boxes_sorted = sorted_boxes(dt_boxes)
else:
dt_boxes_sorted = []
# 2. 合并相邻检测框
if dt_boxes_sorted:
dt_boxes_merged = merge_det_boxes(dt_boxes_sorted)
else:
dt_boxes_merged = []
# 3. 根据公式位置更新检测框(关键步骤!)
if dt_boxes_merged and adjusted_mfdetrec_res:
dt_boxes_final = update_det_boxes(dt_boxes_merged, adjusted_mfdetrec_res)
else:
dt_boxes_final = dt_boxes_merged
# 构造OCR结果格式
ocr_res = [box.tolist() if hasattr(box, 'tolist') else box for box in dt_boxes_final]
if ocr_res:
ocr_result_list = get_ocr_result_list(
ocr_res, useful_list, ocr_res_list_dict['ocr_enable'], bgr_image, _lang
)
ocr_res_list_dict['layout_res'].extend(ocr_result_list)
else:
# 原始单张处理模式
for ocr_res_list_dict in tqdm(ocr_res_list_all_page, desc="OCR-det Predict"):
# Process each area that requires OCR processing
_lang = ocr_res_list_dict['lang']
# Get OCR results for this language's images
ocr_model = atom_model_manager.get_atom_model(
atom_model_name=AtomicModel.OCR,
ocr_show_log=False,
det_db_box_thresh=0.3,
lang=_lang
)
for res in ocr_res_list_dict['ocr_res_list']:
new_image, useful_list = crop_img(
res, ocr_res_list_dict['np_img'], crop_paste_x=50, crop_paste_y=50
)
adjusted_mfdetrec_res = get_adjusted_mfdetrec_res(
ocr_res_list_dict['single_page_mfdetrec_res'], useful_list
)
# OCR-det
bgr_image = cv2.cvtColor(new_image, cv2.COLOR_RGB2BGR)
ocr_res = ocr_model.ocr(
bgr_image, mfd_res=adjusted_mfdetrec_res, rec=False
)[0]
# Integration results
if ocr_res:
ocr_result_list = get_ocr_result_list(
ocr_res, useful_list, ocr_res_list_dict['ocr_enable'],bgr_image, _lang
)
ocr_res_list_dict['layout_res'].extend(ocr_result_list)
# OCR rec
# Create dictionaries to store items by language
need_ocr_lists_by_lang = {} # Dict of lists for each language
img_crop_lists_by_lang = {} # Dict of lists for each language
for layout_res in images_layout_res:
for layout_res_item in layout_res:
if layout_res_item['category_id'] in [15]:
if 'np_img' in layout_res_item and 'lang' in layout_res_item:
lang = layout_res_item['lang']
# Initialize lists for this language if not exist
if lang not in need_ocr_lists_by_lang:
need_ocr_lists_by_lang[lang] = []
img_crop_lists_by_lang[lang] = []
# Add to the appropriate language-specific lists
need_ocr_lists_by_lang[lang].append(layout_res_item)
img_crop_lists_by_lang[lang].append(layout_res_item['np_img'])
# Remove the fields after adding to lists
layout_res_item.pop('np_img')
layout_res_item.pop('lang')
if len(img_crop_lists_by_lang) > 0:
# Process OCR by language
total_processed = 0
# Process each language separately
for lang, img_crop_list in img_crop_lists_by_lang.items():
if len(img_crop_list) > 0:
# Get OCR results for this language's images
ocr_model = atom_model_manager.get_atom_model(
atom_model_name=AtomicModel.OCR,
det_db_box_thresh=0.3,
lang=lang
)
ocr_res_list = ocr_model.ocr(img_crop_list, det=False, tqdm_enable=True)[0]
# Verify we have matching counts
assert len(ocr_res_list) == len(
need_ocr_lists_by_lang[lang]), f'ocr_res_list: {len(ocr_res_list)}, need_ocr_list: {len(need_ocr_lists_by_lang[lang])} for lang: {lang}'
# Process OCR results for this language
for index, layout_res_item in enumerate(need_ocr_lists_by_lang[lang]):
ocr_text, ocr_score = ocr_res_list[index]
layout_res_item['text'] = ocr_text
layout_res_item['score'] = float(f"{ocr_score:.3f}")
if ocr_score < OcrConfidence.min_confidence:
layout_res_item['category_id'] = 16
else:
layout_res_bbox = [layout_res_item['poly'][0], layout_res_item['poly'][1],
layout_res_item['poly'][4], layout_res_item['poly'][5]]
layout_res_width = layout_res_bbox[2] - layout_res_bbox[0]
layout_res_height = layout_res_bbox[3] - layout_res_bbox[1]
if ocr_text in ['(204号', '(20', '(2', '(2号', '(20号'] and ocr_score < 0.8 and layout_res_width < layout_res_height:
layout_res_item['category_id'] = 16
total_processed += len(img_crop_list)
return images_layout_res