""" 去掉正文的引文引用marker https://aicarrier.feishu.cn/wiki/YLOPwo1PGiwFRdkwmyhcZmr0n3d """ import re from magic_pdf.libs.nlp_utils import NLPModels __NLP_MODEL = NLPModels() def check_1(spans, cur_span_i): """寻找前一个char,如果是句号,逗号,那么就是角标""" if cur_span_i==0: return False # 不是角标 pre_span = spans[cur_span_i-1] pre_char = pre_span['chars'][-1]['c'] if pre_char in ['。', ',', '.', ',']: return True return False def check_2(spans, cur_span_i): """检查前面一个span的最后一个单词,如果长度大于5,全都是字母,并且不含大写,就是角标""" pattern = r'\b[A-Z]\.\s[A-Z][a-z]*\b' # 形如A. Bcde, L. Bcde, 人名的缩写 if cur_span_i==0 and len(spans)>1: next_span = spans[cur_span_i+1] next_txt = "".join([c['c'] for c in next_span['chars']]) result = __NLP_MODEL.detect_entity_catgr_using_nlp(next_txt) if result in ["PERSON", "GPE", "ORG"]: return True if re.findall(pattern, next_txt): return True return False # 不是角标 elif cur_span_i==0 and len(spans)==1: # 角标占用了整行?谨慎删除 return False # 如果这个span是最后一个span, if cur_span_i==len(spans)-1: pre_span = spans[cur_span_i-1] pre_txt = "".join([c['c'] for c in pre_span['chars']]) pre_word = pre_txt.split(' ')[-1] result = __NLP_MODEL.detect_entity_catgr_using_nlp(pre_txt) if result in ["PERSON", "GPE", "ORG"]: return True if re.findall(pattern, pre_txt): return True return len(pre_word) > 5 and pre_word.isalpha() and pre_word.islower() else: # 既不是第一个span,也不是最后一个span,那么此时检查一下这个角标距离前后哪个单词更近就属于谁的角标 pre_span = spans[cur_span_i-1] next_span = spans[cur_span_i+1] cur_span = spans[cur_span_i] # 找到前一个和后一个span里的距离最近的单词 pre_distance = 10000 # 一个很大的数 next_distance = 10000 # 一个很大的数 for c in pre_span['chars'][::-1]: if c['c'].isalpha(): pre_distance = cur_span['bbox'][0] - c['bbox'][2] break for c in next_span['chars']: if c['c'].isalpha(): next_distance = c['bbox'][0] - cur_span['bbox'][2] break if pre_distance 5 and pre_word.isalpha() and pre_word.islower() def check_3(spans, cur_span_i): """上标里有[], 有*, 有-, 有逗号""" # 如[2-3],[22] # 如 2,3,4 cur_span_txt = ''.join(c['c'] for c in spans[cur_span_i]['chars']).strip() bad_char = ['[', ']', '*', ','] if any([c in cur_span_txt for c in bad_char]) and any(character.isdigit() for character in cur_span_txt): return True # 如2-3, a-b patterns = [r'\d+-\d+', r'[a-zA-Z]-[a-zA-Z]', r'[a-zA-Z],[a-zA-Z]'] for pattern in patterns: match = re.match(pattern, cur_span_txt) if match is not None: return True return False def remove_citation_marker(with_char_text_blcoks): for blk in with_char_text_blcoks: for line in blk['lines']: # 如果span里的个数少于2个,那只能忽略,角标不可能自己独占一行 if len(line['spans'])<=1: continue # 找到高度最高的span作为位置比较的基准 max_hi_span = line['spans'][0]['bbox'] min_font_sz = 10000 # line里最小的字体 max_font_sz = 0 # line里最大的字体 for s in line['spans']: if max_hi_span[3]-max_hi_span[1]s['size']: min_font_sz = s['size'] if max_font_sz0.2 or (base_span_mid_y-span_mid_y>0 and abs(span_font_sz-min_font_sz)/min_font_sz<0.1): """ 1. 它的前一个char如果是句号或者逗号的话,那么肯定是角标而不是公式 2. 如果这个角标的前面是一个单词(长度大于5)而不是任何大写或小写的短字母的话 应该也是角标 3. 上标里有数字和逗号或者数字+星号的组合,方括号,一般肯定就是角标了 4. 这个角标属于前文还是后文要根据距离来判断,如果距离前面的文本太近,那么就是前面的角标,否则就是后面的角标 """ if check_1(line['spans'], i) or check_2(line['spans'], i) or check_3(line['spans'], i): """删除掉这个角标:删除这个span, 同时还要更新line的text""" span_to_del.append(span) if len(span_to_del)>0: for span in span_to_del: line['spans'].remove(span) line['text'] = ''.join([c['c'] for s in line['spans'] for c in s['chars']]) return with_char_text_blcoks