from typing import List import cv2 import numpy as np def projection_by_bboxes(boxes: np.array, axis: int) -> np.ndarray: """ 通过一组 bbox 获得投影直方图,最后以 per-pixel 形式输出 Args: boxes: [N, 4] axis: 0-x坐标向水平方向投影, 1-y坐标向垂直方向投影 Returns: 1D 投影直方图,长度为投影方向坐标的最大值(我们不需要图片的实际边长,因为只是要找文本框的间隔) """ assert axis in [0, 1] length = np.max(boxes[:, axis::2]) res = np.zeros(length, dtype=int) # TODO: how to remove for loop? for start, end in boxes[:, axis::2]: res[start:end] += 1 return res # from: https://dothinking.github.io/2021-06-19-%E9%80%92%E5%BD%92%E6%8A%95%E5%BD%B1%E5%88%86%E5%89%B2%E7%AE%97%E6%B3%95/#:~:text=%E9%80%92%E5%BD%92%E6%8A%95%E5%BD%B1%E5%88%86%E5%89%B2%EF%BC%88Recursive%20XY,%EF%BC%8C%E5%8F%AF%E4%BB%A5%E5%88%92%E5%88%86%E6%AE%B5%E8%90%BD%E3%80%81%E8%A1%8C%E3%80%82 def split_projection_profile(arr_values: np.array, min_value: float, min_gap: float): """Split projection profile: ``` ┌──┐ arr_values │ │ ┌─┐─── ┌──┐ │ │ │ │ | │ │ │ │ ┌───┐ │ │min_value │ │<- min_gap ->│ │ │ │ │ │ | ────┴──┴─────────────┴──┴─┴───┴─┴─┴─┴─── 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ``` Args: arr_values (np.array): 1-d array representing the projection profile. min_value (float): Ignore the profile if `arr_value` is less than `min_value`. min_gap (float): Ignore the gap if less than this value. Returns: tuple: Start indexes and end indexes of split groups. """ # all indexes with projection height exceeding the threshold arr_index = np.where(arr_values > min_value)[0] if not len(arr_index): return # find zero intervals between adjacent projections # | | || # ||||<- zero-interval -> ||||| arr_diff = arr_index[1:] - arr_index[0:-1] arr_diff_index = np.where(arr_diff > min_gap)[0] arr_zero_intvl_start = arr_index[arr_diff_index] arr_zero_intvl_end = arr_index[arr_diff_index + 1] # convert to index of projection range: # the start index of zero interval is the end index of projection arr_start = np.insert(arr_zero_intvl_end, 0, arr_index[0]) arr_end = np.append(arr_zero_intvl_start, arr_index[-1]) arr_end += 1 # end index will be excluded as index slice return arr_start, arr_end def recursive_xy_cut(boxes: np.ndarray, indices: List[int], res: List[int]): """ Args: boxes: (N, 4) indices: 递归过程中始终表示 box 在原始数据中的索引 res: 保存输出结果 """ # 向 y 轴投影 assert len(boxes) == len(indices) _indices = boxes[:, 1].argsort() y_sorted_boxes = boxes[_indices] y_sorted_indices = indices[_indices] # debug_vis(y_sorted_boxes, y_sorted_indices) y_projection = projection_by_bboxes(boxes=y_sorted_boxes, axis=1) pos_y = split_projection_profile(y_projection, 0, 1) if not pos_y: return arr_y0, arr_y1 = pos_y for r0, r1 in zip(arr_y0, arr_y1): # [r0, r1] 表示按照水平切分,有 bbox 的区域,对这些区域会再进行垂直切分 _indices = (r0 <= y_sorted_boxes[:, 1]) & (y_sorted_boxes[:, 1] < r1) y_sorted_boxes_chunk = y_sorted_boxes[_indices] y_sorted_indices_chunk = y_sorted_indices[_indices] _indices = y_sorted_boxes_chunk[:, 0].argsort() x_sorted_boxes_chunk = y_sorted_boxes_chunk[_indices] x_sorted_indices_chunk = y_sorted_indices_chunk[_indices] # 往 x 方向投影 x_projection = projection_by_bboxes(boxes=x_sorted_boxes_chunk, axis=0) pos_x = split_projection_profile(x_projection, 0, 1) if not pos_x: continue arr_x0, arr_x1 = pos_x if len(arr_x0) == 1: # x 方向无法切分 res.extend(x_sorted_indices_chunk) continue # x 方向上能分开,继续递归调用 for c0, c1 in zip(arr_x0, arr_x1): _indices = (c0 <= x_sorted_boxes_chunk[:, 0]) & ( x_sorted_boxes_chunk[:, 0] < c1 ) recursive_xy_cut( x_sorted_boxes_chunk[_indices], x_sorted_indices_chunk[_indices], res ) def points_to_bbox(points): assert len(points) == 8 # [x1,y1,x2,y2,x3,y3,x4,y4] left = min(points[::2]) right = max(points[::2]) top = min(points[1::2]) bottom = max(points[1::2]) left = max(left, 0) top = max(top, 0) right = max(right, 0) bottom = max(bottom, 0) return [left, top, right, bottom] def bbox2points(bbox): left, top, right, bottom = bbox return [left, top, right, top, right, bottom, left, bottom] def vis_polygon(img, points, thickness=2, color=None): br2bl_color = color tl2tr_color = color tr2br_color = color bl2tl_color = color cv2.line( img, (points[0][0], points[0][1]), (points[1][0], points[1][1]), color=tl2tr_color, thickness=thickness, ) cv2.line( img, (points[1][0], points[1][1]), (points[2][0], points[2][1]), color=tr2br_color, thickness=thickness, ) cv2.line( img, (points[2][0], points[2][1]), (points[3][0], points[3][1]), color=br2bl_color, thickness=thickness, ) cv2.line( img, (points[3][0], points[3][1]), (points[0][0], points[0][1]), color=bl2tl_color, thickness=thickness, ) return img def vis_points( img: np.ndarray, points, texts: List[str] = None, color=(0, 200, 0) ) -> np.ndarray: """ Args: img: points: [N, 8] 8: x1,y1,x2,y2,x3,y3,x3,y4 texts: color: Returns: """ points = np.array(points) if texts is not None: assert len(texts) == points.shape[0] for i, _points in enumerate(points): vis_polygon(img, _points.reshape(-1, 2), thickness=2, color=color) bbox = points_to_bbox(_points) left, top, right, bottom = bbox cx = (left + right) // 2 cy = (top + bottom) // 2 txt = texts[i] font = cv2.FONT_HERSHEY_SIMPLEX cat_size = cv2.getTextSize(txt, font, 0.5, 2)[0] img = cv2.rectangle( img, (cx - 5 * len(txt), cy - cat_size[1] - 5), (cx - 5 * len(txt) + cat_size[0], cy - 5), color, -1, ) img = cv2.putText( img, txt, (cx - 5 * len(txt), cy - 5), font, 0.5, (255, 255, 255), thickness=1, lineType=cv2.LINE_AA, ) return img def vis_polygons_with_index(image, points): texts = [str(i) for i in range(len(points))] res_img = vis_points(image.copy(), points, texts) return res_img