""" 批量处理图片/PDF文件并生成符合评测要求的预测结果(MinerU版本) 根据 MinerU demo.py 框架调用方式: - 输入:支持 PDF 和各种图片格式 - 输出:每个文件对应的 .md、.json 文件,所有图片保存为单独的图片文件 - 调用方式:通过 vlm-http-client 连接到 MinerU vLLM 服务器 """ import os import sys import json import copy import shutil import time import traceback from pathlib import Path from typing import List, Dict, Any from PIL import Image from tqdm import tqdm import argparse from loguru import logger # 导入 MinerU 核心组件 (参考 demo.py) from mineru.cli.common import read_fn, convert_pdf_bytes_to_bytes_by_pypdfium2, prepare_env from mineru.data.data_reader_writer import FileBasedDataWriter from mineru.utils.draw_bbox import draw_layout_bbox from mineru.utils.enum_class import MakeMode from mineru.backend.vlm.vlm_analyze import doc_analyze as vlm_doc_analyze from mineru.backend.vlm.vlm_middle_json_mkcontent import union_make as vlm_union_make # 导入工具函数 from utils import ( get_input_files, collect_pid_files, normalize_markdown_table, normalize_json_table, ) class MinerUVLLMProcessor: """MinerU vLLM 处理器 (基于 demo.py 框架)""" def __init__(self, server_url: str = "http://127.0.0.1:8121", timeout: int = 300, normalize_numbers: bool = False, debug: bool = False): """ 初始化处理器 Args: server_url: vLLM 服务器地址 timeout: 请求超时时间 normalize_numbers: 是否标准化数字 debug: 是否启用调试模式 """ self.server_url = server_url.rstrip('/') self.timeout = timeout self.normalize_numbers = normalize_numbers self.debug = debug self.backend = "http-client" # 固定使用 http-client 后端 print(f"MinerU vLLM Processor 初始化完成:") print(f" - 服务器: {server_url}") print(f" - 后端: vlm-{self.backend}") print(f" - 超时: {timeout}s") print(f" - 数字标准化: {normalize_numbers}") print(f" - 调试模式: {debug}") def do_parse_single_file(self, input_file: str, output_dir: str, start_page_id: int = 0, end_page_id: int = None) -> Dict[str, Any]: """ 解析单个文件 (参考 demo.py 的 do_parse 函数) Args: file_path: 文件路径 output_dir: 输出目录 start_page_id: 起始页ID end_page_id: 结束页ID Returns: dict: 处理结果 """ try: # 准备文件名和字节数据 file_path = Path(input_file) pdf_file_name = file_path.stem pdf_bytes = read_fn(str(file_path)) # 转换PDF字节流 (如果需要) if file_path.suffix.lower() == '.pdf': pdf_bytes = convert_pdf_bytes_to_bytes_by_pypdfium2( pdf_bytes, start_page_id, end_page_id ) # 准备环境 (创建输出目录) # parse_method = "vlm" # local_image_dir, local_md_dir = prepare_env(output_dir, pdf_file_name, parse_method) local_md_dir = Path(output_dir).resolve() local_image_dir = local_md_dir / "images" image_writer = FileBasedDataWriter(local_image_dir.as_posix()) md_writer = FileBasedDataWriter(local_md_dir.as_posix()) # 使用 VLM 分析文档 (核心调用) middle_json, model_output = vlm_doc_analyze( pdf_bytes, image_writer=image_writer, backend=self.backend, server_url=self.server_url ) pdf_info = middle_json["pdf_info"] # 处理输出 (参考 demo.py 的 _process_output) output_files = self._process_output( pdf_info=pdf_info, pdf_bytes=pdf_bytes, pdf_file_name=pdf_file_name, local_md_dir=local_md_dir, local_image_dir=local_image_dir, md_writer=md_writer, middle_json=middle_json, model_output=model_output, original_file_path=str(file_path) ) # 统计提取信息 extraction_stats = self._get_extraction_stats(middle_json) return { "success": True, "pdf_info": pdf_info, "middle_json": middle_json, "model_output": model_output, "output_files": output_files, "extraction_stats": extraction_stats } except Exception as e: logger.error(f"Failed to process {file_path}: {e}") return { "success": False, "error": str(e) } def _process_output(self, pdf_info, pdf_bytes, pdf_file_name, local_md_dir, local_image_dir, md_writer, middle_json, model_output, original_file_path: str) -> Dict[str, str]: """ 处理输出文件 (改进版的 demo.py _process_output) Args: pdf_info: PDF信息 pdf_bytes: PDF字节数据 pdf_file_name: PDF文件名 local_md_dir: Markdown目录 local_image_dir: 图片目录 md_writer: Markdown写入器 middle_json: 中间JSON数据 model_output: 模型输出 original_file_path: 原始文件路径 Returns: dict: 保存的文件路径信息 """ saved_files = {} try: # 设置相对图片目录名 image_dir = str(os.path.basename(local_image_dir)) # 1. 生成并保存 Markdown 文件 md_content_str = vlm_union_make(pdf_info, MakeMode.MM_MD, image_dir) # 数字标准化处理 if self.normalize_numbers: original_md = md_content_str md_content_str = normalize_markdown_table(md_content_str) changes_count = len([1 for o, n in zip(original_md, md_content_str) if o != n]) if changes_count > 0: saved_files['md_normalized'] = f"✅ 已标准化 {changes_count} 个字符(全角→半角)" else: saved_files['md_normalized'] = "ℹ️ 无需标准化(已是标准格式)" md_writer.write_string(f"{pdf_file_name}.md", md_content_str) saved_files['md'] = os.path.join(local_md_dir, f"{pdf_file_name}.md") # 2. 生成并保存 content_list JSON 文件 content_list = vlm_union_make(pdf_info, MakeMode.CONTENT_LIST, image_dir) content_list_str = json.dumps(content_list, ensure_ascii=False, indent=2) md_writer.write_string(f"{pdf_file_name}_original.json", content_list_str) # 这里需要将middle_json->content_list 中的bbox坐标同比例缩放回去, 不用PDF坐标,使用针对图片坐标 # 因为已是单页处理,所以直接用第0页的width,height page_width, page_height = pdf_info[0].get('page_size') for element in content_list: if "bbox" in element: x0, y0, x1, y1 = element["bbox"] element["bbox"] = [ int(x0 / 1000 * page_width), int(y0 / 1000 * page_height), int(x1 / 1000 * page_width), int(y1 / 1000 * page_height), ] content_list_str = json.dumps(content_list, ensure_ascii=False, indent=2) # 数字标准化处理 if self.normalize_numbers: original_json = content_list_str content_list_str = normalize_json_table(content_list_str) changes_count = len([1 for o, n in zip(original_json, content_list_str) if o != n]) if changes_count > 0: saved_files['json_normalized'] = f"✅ 已标准化 {changes_count} 个字符(全角→半角)" else: saved_files['json_normalized'] = "ℹ️ 无需标准化(已是标准格式)" md_writer.write_string(f"{pdf_file_name}.json", content_list_str) saved_files['json'] = os.path.join(local_md_dir, f"{pdf_file_name}.json") # 绘制布局边界框 try: draw_layout_bbox(pdf_info, pdf_bytes, local_md_dir, f"{pdf_file_name}_layout.pdf") saved_files['layout_pdf'] = os.path.join(local_md_dir, f"{pdf_file_name}_layout.pdf") except Exception as e: logger.warning(f"Failed to draw layout bbox: {e}") # 3. 保存原始文件到 images 目录 # original_file_path = Path(original_file_path) # output_image_path = os.path.join(local_image_dir, f"{pdf_file_name}{original_file_path.suffix}") # if original_file_path.exists(): # shutil.copy2(str(original_file_path), output_image_path) # saved_files['image'] = output_image_path # 4. 调试模式下保存额外信息 if self.debug: # 保存 middle.json middle_json_str = json.dumps(middle_json, ensure_ascii=False, indent=2) if self.normalize_numbers: middle_json_str = normalize_json_table(middle_json_str) md_writer.write_string(f"{pdf_file_name}_middle.json", middle_json_str) saved_files['middle_json'] = os.path.join(local_md_dir, f"{pdf_file_name}_middle.json") # 保存 model output if model_output: model_output_str = json.dumps(model_output, ensure_ascii=False, indent=2) md_writer.write_string(f"{pdf_file_name}_model.json", model_output_str) saved_files['model_output'] = os.path.join(local_md_dir, f"{pdf_file_name}_model.json") # # 保存原始PDF # md_writer.write(f"{pdf_file_name}_origin.pdf", pdf_bytes) # saved_files['origin_pdf'] = os.path.join(local_md_dir, f"{pdf_file_name}_origin.pdf") logger.info(f"Output saved to: {local_md_dir}") except Exception as e: logger.error(f"Error in _process_output: {e}") if self.debug: traceback.print_exc() return saved_files def _get_extraction_stats(self, middle_json: Dict) -> Dict[str, Any]: """ 获取提取统计信息 Args: middle_json: 中间JSON数据 Returns: dict: 统计信息 """ stats = { "total_blocks": 0, "block_types": {}, "total_pages": 0 } try: pdf_info = middle_json.get("pdf_info", []) if isinstance(pdf_info, list): stats["total_pages"] = len(pdf_info) for page_info in pdf_info: para_blocks = page_info.get("para_blocks", []) stats["total_blocks"] += len(para_blocks) for block in para_blocks: block_type = block.get("type", "unknown") stats["block_types"][block_type] = stats["block_types"].get(block_type, 0) + 1 except Exception as e: logger.warning(f"Failed to get extraction stats: {e}") return stats def process_single_image(self, image_path: str, output_dir: str) -> Dict[str, Any]: """ 处理单张图片 (保持与原接口兼容) Args: image_path: 图片路径 output_dir: 输出目录 Returns: dict: 处理结果 """ start_time = time.time() image_name = Path(image_path).stem result_info = { "image_path": image_path, "processing_time": 0, "success": False, "server": self.server_url, "error": None, "output_files": {}, "is_pdf_page": "_page_" in Path(image_path).name, "extraction_stats": {} } try: # 检查输出文件是否已存在 expected_md_path = Path(output_dir) / f"{image_name}.md" expected_json_path = Path(output_dir) / f"{image_name}.json" if expected_md_path.exists() and expected_json_path.exists(): result_info.update({ "success": True, "processing_time": 0, "output_files": { "md": str(expected_md_path), "json": str(expected_json_path) }, "skipped": True }) return result_info # 使用 do_parse_single_file 处理 parse_result = self.do_parse_single_file(image_path, output_dir) if parse_result["success"]: result_info.update({ "success": True, "output_files": parse_result["output_files"], "extraction_stats": parse_result["extraction_stats"] }) else: result_info["error"] = parse_result.get("error", "Unknown error") except Exception as e: result_info["error"] = str(e) logger.error(f"Error processing {image_name}: {e}") if self.debug: traceback.print_exc() finally: result_info["processing_time"] = time.time() - start_time return result_info def process_images_single_process(image_paths: List[str], processor: MinerUVLLMProcessor, batch_size: int = 1, output_dir: str = "./output") -> List[Dict[str, Any]]: """ 单进程版本的图像处理函数 """ # 创建输出目录 output_path = Path(output_dir) output_path.mkdir(parents=True, exist_ok=True) all_results = [] total_images = len(image_paths) print(f"Processing {total_images} images with batch size {batch_size}") with tqdm(total=total_images, desc="Processing images", unit="img", bar_format='{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]') as pbar: for i in range(0, total_images, batch_size): batch = image_paths[i:i + batch_size] batch_start_time = time.time() batch_results = [] try: for image_path in batch: try: result = processor.process_single_image(image_path, output_dir) batch_results.append(result) except Exception as e: logger.error(f"Error processing {image_path}: {e}") batch_results.append({ "image_path": image_path, "processing_time": 0, "success": False, "server": processor.server_url, "error": str(e) }) batch_processing_time = time.time() - batch_start_time all_results.extend(batch_results) # 更新进度条 success_count = sum(1 for r in batch_results if r.get('success', False)) skipped_count = sum(1 for r in batch_results if r.get('skipped', False)) total_success = sum(1 for r in all_results if r.get('success', False)) total_skipped = sum(1 for r in all_results if r.get('skipped', False)) avg_time = batch_processing_time / len(batch) if len(batch) > 0 else 0 total_blocks = sum(r.get('extraction_stats', {}).get('total_blocks', 0) for r in batch_results) pbar.update(len(batch)) pbar.set_postfix({ 'batch_time': f"{batch_processing_time:.2f}s", 'avg_time': f"{avg_time:.2f}s/img", 'success': f"{total_success}/{len(all_results)}", 'skipped': f"{total_skipped}", 'blocks': f"{total_blocks}", 'rate': f"{total_success/len(all_results)*100:.1f}%" if len(all_results) > 0 else "0%" }) except Exception as e: logger.error(f"Error processing batch {[Path(p).name for p in batch]}: {e}") error_results = [] for img_path in batch: error_results.append({ "image_path": str(img_path), "processing_time": 0, "success": False, "server": processor.server_url, "error": str(e) }) all_results.extend(error_results) pbar.update(len(batch)) return all_results def main(): """主函数""" parser = argparse.ArgumentParser(description="MinerU vLLM Batch Processing (demo.py framework)") # 输入参数组 input_group = parser.add_mutually_exclusive_group(required=True) input_group.add_argument("--input_file", type=str, help="Input file (supports both PDF and image file)") input_group.add_argument("--input_dir", type=str, help="Input directory (supports both PDF and image files)") input_group.add_argument("--input_file_list", type=str, help="Input file list (one file per line)") input_group.add_argument("--input_csv", type=str, help="Input CSV file with image_path and status columns") # 输出参数 parser.add_argument("--output_dir", type=str, required=True, help="Output directory") # MinerU vLLM 参数 parser.add_argument("--server_url", type=str, default="http://127.0.0.1:8121", help="MinerU vLLM server URL") parser.add_argument("--timeout", type=int, default=300, help="Request timeout in seconds") parser.add_argument("--pdf_dpi", type=int, default=200, help="DPI for PDF to image conversion") parser.add_argument('--no-normalize', action='store_true', help='禁用数字标准化') parser.add_argument('--debug', action='store_true', help='启用调试模式') # 处理参数 parser.add_argument("--batch_size", type=int, default=1, help="Batch size") parser.add_argument("--test_mode", action="store_true", help="Test mode (process only 10 images)") parser.add_argument("--collect_results", type=str, help="收集处理结果到指定CSV文件") args = parser.parse_args() try: # 获取并预处理输入文件 print("🔄 Preprocessing input files...") image_files = get_input_files(args) if not image_files: print("❌ No input files found or processed") return 1 output_dir = Path(args.output_dir).resolve() print(f"📁 Output dir: {output_dir}") print(f"📊 Found {len(image_files)} image files to process") if args.test_mode: image_files = image_files[:10] print(f"🧪 Test mode: processing only {len(image_files)} images") print(f"🌐 Using server: {args.server_url}") print(f"📦 Batch size: {args.batch_size}") print(f"⏱️ Timeout: {args.timeout}s") # 创建处理器 processor = MinerUVLLMProcessor( server_url=args.server_url, timeout=args.timeout, normalize_numbers=not args.no_normalize, debug=args.debug ) # 开始处理 start_time = time.time() results = process_images_single_process( image_files, processor, args.batch_size, str(output_dir) ) total_time = time.time() - start_time # 统计结果 success_count = sum(1 for r in results if r.get('success', False)) skipped_count = sum(1 for r in results if r.get('skipped', False)) error_count = len(results) - success_count pdf_page_count = sum(1 for r in results if r.get('is_pdf_page', False)) # 统计提取的块信息 total_blocks = sum(r.get('extraction_stats', {}).get('total_blocks', 0) for r in results) block_type_stats = {} for result in results: if 'extraction_stats' in result and 'block_types' in result['extraction_stats']: for block_type, count in result['extraction_stats']['block_types'].items(): block_type_stats[block_type] = block_type_stats.get(block_type, 0) + count print(f"\n" + "="*60) print(f"✅ Processing completed!") print(f"📊 Statistics:") print(f" Total files processed: {len(image_files)}") print(f" PDF pages processed: {pdf_page_count}") print(f" Regular images processed: {len(image_files) - pdf_page_count}") print(f" Successful: {success_count}") print(f" Skipped: {skipped_count}") print(f" Failed: {error_count}") if len(image_files) > 0: print(f" Success rate: {success_count / len(image_files) * 100:.2f}%") print(f"📋 Content Extraction:") print(f" Total blocks extracted: {total_blocks}") if block_type_stats: print(f" Block types:") for block_type, count in sorted(block_type_stats.items()): print(f" {block_type}: {count}") print(f"⏱️ Performance:") print(f" Total time: {total_time:.2f} seconds") if total_time > 0: print(f" Throughput: {len(image_files) / total_time:.2f} images/second") print(f" Avg time per image: {total_time / len(image_files):.2f} seconds") print(f"\n📁 Output Structure (demo.py compatible):") print(f" output_dir/") print(f" ├── filename.md # Markdown content") print(f" ├── filename.json # Content list") print(f" ├── filename_layout.json # Debug: layout bbox") print(f" └── images/ # Extracted images") print(f" └── filename.png") if args.debug: print(f" ├── filename_middle.json # Debug: middle JSON") print(f" └── filename_model.json # Debug: model output") # 保存结果统计 stats = { "total_files": len(image_files), "pdf_pages": pdf_page_count, "regular_images": len(image_files) - pdf_page_count, "success_count": success_count, "skipped_count": skipped_count, "error_count": error_count, "success_rate": success_count / len(image_files) if len(image_files) > 0 else 0, "total_time": total_time, "throughput": len(image_files) / total_time if total_time > 0 else 0, "avg_time_per_image": total_time / len(image_files) if len(image_files) > 0 else 0, "batch_size": args.batch_size, "server": args.server_url, "backend": "vlm-http-client", "timeout": args.timeout, "pdf_dpi": args.pdf_dpi, "total_blocks": total_blocks, "block_type_stats": block_type_stats, "normalization_enabled": not args.no_normalize, "timestamp": time.strftime("%Y-%m-%d %H:%M:%S") } # 保存最终结果 output_file_name = Path(output_dir).name output_file = os.path.join(output_dir, f"{output_file_name}_results.json") final_results = { "stats": stats, "results": results } with open(output_file, 'w', encoding='utf-8') as f: json.dump(final_results, f, ensure_ascii=False, indent=2) print(f"💾 Results saved to: {output_file}") # 收集处理结果 if not args.collect_results: output_file_processed = Path(args.output_dir) / f"processed_files_{time.strftime('%Y%m%d_%H%M%S')}.csv" else: output_file_processed = Path(args.collect_results).resolve() processed_files = collect_pid_files(output_file) with open(output_file_processed, 'w', encoding='utf-8') as f: f.write("image_path,status\n") for file_path, status in processed_files: f.write(f"{file_path},{status}\n") print(f"💾 Processed files saved to: {output_file_processed}") return 0 except Exception as e: logger.error(f"Processing failed: {e}") traceback.print_exc() return 1 if __name__ == "__main__": print(f"🚀 启动MinerU vLLM统一PDF/图像处理程序...") print(f"🔧 CUDA_VISIBLE_DEVICES: {os.environ.get('CUDA_VISIBLE_DEVICES', 'Not set')}") if len(sys.argv) == 1: # 如果没有命令行参数,使用默认配置运行 print("ℹ️ No command line arguments provided. Running with default configuration...") # 默认配置 default_config = { # "input_file": "/home/ubuntu/zhch/data/至远彩色印刷工业有限公司/2023年度报告母公司.img/2023年度报告母公司_page_003.png", "input_dir": "/Users/zhch158/workspace/data/流水分析/B用户_扫描流水.img", "output_dir": "/Users/zhch158/workspace/data/流水分析/B用户_扫描流水/mineru-vlm-2.5.3_Results", # "collect_results": f"./output/processed_files_{time.strftime('%Y%m%d_%H%M%S')}.csv", "server_url": "http://10.192.72.11:8121", "timeout": "300", "batch_size": "1", "pdf_dpi": "200", } # 构造参数 sys.argv = [sys.argv[0]] for key, value in default_config.items(): sys.argv.extend([f"--{key}", str(value)]) # 测试模式和调试模式 # sys.argv.append("--test_mode") sys.argv.append("--debug") sys.exit(main())