boost_with_cuda.rst 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315
  1. Boost With Cuda
  2. ================
  3. If your device supports CUDA and meets the GPU requirements of the
  4. mainline environment, you can use GPU acceleration. Please select the
  5. appropriate guide based on your system:
  6. - :ref:`ubuntu_22_04_lts_section`
  7. - :ref:`windows_10_or_11_section`
  8. - Quick Deployment with Docker > Docker requires a GPU with at least
  9. 16GB of VRAM, and all acceleration features are enabled by default.
  10. .. note::
  11. Before running this Docker, you can use the following command to
  12. check if your device supports CUDA acceleration on Docker.
  13. bash docker run --rm --gpus=all nvidia/cuda:12.1.0-base-ubuntu22.04 nvidia-smi
  14. .. code:: sh
  15. wget https://github.com/opendatalab/MinerU/raw/master/Dockerfile
  16. docker build -t mineru:latest .
  17. docker run --rm -it --gpus=all mineru:latest /bin/bash
  18. magic-pdf --help
  19. .. _ubuntu_22_04_lts_section:
  20. Ubuntu 22.04 LTS
  21. -----------------
  22. 1. Check if NVIDIA Drivers Are Installed
  23. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  24. .. code:: sh
  25. nvidia-smi
  26. If you see information similar to the following, it means that the
  27. NVIDIA drivers are already installed, and you can skip Step 2.
  28. Notice:``CUDA Version`` should be >= 12.1, If the displayed version
  29. number is less than 12.1, please upgrade the driver.
  30. .. code:: text
  31. +---------------------------------------------------------------------------------------+
  32. | NVIDIA-SMI 537.34 Driver Version: 537.34 CUDA Version: 12.2 |
  33. |-----------------------------------------+----------------------+----------------------+
  34. | GPU Name TCC/WDDM | Bus-Id Disp.A | Volatile Uncorr. ECC |
  35. | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
  36. | | | MIG M. |
  37. |=========================================+======================+======================|
  38. | 0 NVIDIA GeForce RTX 3060 Ti WDDM | 00000000:01:00.0 On | N/A |
  39. | 0% 51C P8 12W / 200W | 1489MiB / 8192MiB | 5% Default |
  40. | | | N/A |
  41. +-----------------------------------------+----------------------+----------------------+
  42. 2. Install the Driver
  43. ~~~~~~~~~~~~~~~~~~~~~
  44. If no driver is installed, use the following command:
  45. .. code:: sh
  46. sudo apt-get update
  47. sudo apt-get install nvidia-driver-545
  48. Install the proprietary driver and restart your computer after
  49. installation.
  50. .. code:: sh
  51. reboot
  52. 3. Install Anaconda
  53. ~~~~~~~~~~~~~~~~~~~
  54. If Anaconda is already installed, skip this step.
  55. .. code:: sh
  56. wget https://repo.anaconda.com/archive/Anaconda3-2024.06-1-Linux-x86_64.sh
  57. bash Anaconda3-2024.06-1-Linux-x86_64.sh
  58. In the final step, enter ``yes``, close the terminal, and reopen it.
  59. 4. Create an Environment Using Conda
  60. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  61. Specify Python version 3.10.
  62. .. code:: sh
  63. conda create -n MinerU python=3.10
  64. conda activate MinerU
  65. 5. Install Applications
  66. ~~~~~~~~~~~~~~~~~~~~~~~
  67. .. code:: sh
  68. pip install -U magic-pdf[full] --extra-index-url https://wheels.myhloli.com
  69. ❗ After installation, make sure to check the version of ``magic-pdf``
  70. using the following command:
  71. .. code:: sh
  72. magic-pdf --version
  73. If the version number is less than 0.7.0, please report the issue.
  74. 6. Download Models
  75. ~~~~~~~~~~~~~~~~~~
  76. Refer to detailed instructions on :doc:`download_model_weight_files`
  77. 7. Understand the Location of the Configuration File
  78. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  79. After completing the `6. Download Models <#6-download-models>`__ step,
  80. the script will automatically generate a ``magic-pdf.json`` file in the
  81. user directory and configure the default model path. You can find the
  82. ``magic-pdf.json`` file in your user directory.
  83. The user directory for Linux is “/home/username”.
  84. 8. First Run
  85. ~~~~~~~~~~~~
  86. Download a sample file from the repository and test it.
  87. .. code:: sh
  88. wget https://github.com/opendatalab/MinerU/raw/master/demo/small_ocr.pdf
  89. magic-pdf -p small_ocr.pdf
  90. 9. Test CUDA Acceleration
  91. ~~~~~~~~~~~~~~~~~~~~~~~~~
  92. If your graphics card has at least **8GB** of VRAM, follow these steps
  93. to test CUDA acceleration:
  94. ❗ Due to the extremely limited nature of 8GB VRAM for running this
  95. application, you need to close all other programs using VRAM to
  96. ensure that 8GB of VRAM is available when running this application.
  97. 1. Modify the value of ``"device-mode"`` in the ``magic-pdf.json``
  98. configuration file located in your home directory.
  99. .. code:: json
  100. {
  101. "device-mode": "cuda"
  102. }
  103. 2. Test CUDA acceleration with the following command:
  104. .. code:: sh
  105. magic-pdf -p small_ocr.pdf
  106. 10. Enable CUDA Acceleration for OCR
  107. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  108. 1. Download ``paddlepaddle-gpu``. Installation will automatically enable
  109. OCR acceleration.
  110. .. code:: sh
  111. python -m pip install paddlepaddle-gpu==3.0.0b1 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/
  112. 2. Test OCR acceleration with the following command:
  113. .. code:: sh
  114. magic-pdf -p small_ocr.pdf
  115. .. _windows_10_or_11_section:
  116. Windows 10/11
  117. --------------
  118. 1. Install CUDA and cuDNN
  119. ~~~~~~~~~~~~~~~~~~~~~~~~~
  120. Required versions: CUDA 11.8 + cuDNN 8.7.0
  121. - CUDA 11.8: https://developer.nvidia.com/cuda-11-8-0-download-archive
  122. - cuDNN v8.7.0 (November 28th, 2022), for CUDA 11.x:
  123. https://developer.nvidia.com/rdp/cudnn-archive
  124. 2. Install Anaconda
  125. ~~~~~~~~~~~~~~~~~~~
  126. If Anaconda is already installed, you can skip this step.
  127. Download link: https://repo.anaconda.com/archive/Anaconda3-2024.06-1-Windows-x86_64.exe
  128. 3. Create an Environment Using Conda
  129. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  130. Python version must be 3.10.
  131. ::
  132. conda create -n MinerU python=3.10
  133. conda activate MinerU
  134. 4. Install Applications
  135. ~~~~~~~~~~~~~~~~~~~~~~~
  136. ::
  137. pip install -U magic-pdf[full] --extra-index-url https://wheels.myhloli.com
  138. ..
  139. ❗️After installation, verify the version of ``magic-pdf``:
  140. .. code:: bash
  141. magic-pdf --version
  142. If the version number is less than 0.7.0, please report it in the
  143. issues section.
  144. 5. Download Models
  145. ~~~~~~~~~~~~~~~~~~
  146. Refer to detailed instructions on :doc:`download_model_weight_files`
  147. 6. Understand the Location of the Configuration File
  148. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  149. After completing the `5. Download Models <#5-download-models>`__ step,
  150. the script will automatically generate a ``magic-pdf.json`` file in the
  151. user directory and configure the default model path. You can find the
  152. ``magic-pdf.json`` file in your 【user directory】 .
  153. The user directory for Windows is “C:/Users/username”.
  154. 7. First Run
  155. ~~~~~~~~~~~~
  156. Download a sample file from the repository and test it.
  157. .. code:: powershell
  158. wget https://github.com/opendatalab/MinerU/raw/master/demo/small_ocr.pdf -O small_ocr.pdf
  159. magic-pdf -p small_ocr.pdf
  160. 8. Test CUDA Acceleration
  161. ~~~~~~~~~~~~~~~~~~~~~~~~~
  162. If your graphics card has at least 8GB of VRAM, follow these steps to
  163. test CUDA-accelerated parsing performance.
  164. ❗ Due to the extremely limited nature of 8GB VRAM for running this
  165. application, you need to close all other programs using VRAM to
  166. ensure that 8GB of VRAM is available when running this application.
  167. 1. **Overwrite the installation of torch and torchvision** supporting
  168. CUDA.
  169. ::
  170. pip install --force-reinstall torch==2.3.1 torchvision==0.18.1 --index-url https://download.pytorch.org/whl/cu118
  171. ..
  172. ❗️Ensure the following versions are specified in the command:
  173. ::
  174. torch==2.3.1 torchvision==0.18.1
  175. These are the highest versions we support. Installing higher
  176. versions without specifying them will cause the program to fail.
  177. 2. **Modify the value of ``"device-mode"``** in the ``magic-pdf.json``
  178. configuration file located in your user directory.
  179. .. code:: json
  180. {
  181. "device-mode": "cuda"
  182. }
  183. 3. **Run the following command to test CUDA acceleration**:
  184. ::
  185. magic-pdf -p small_ocr.pdf
  186. 9. Enable CUDA Acceleration for OCR
  187. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  188. 1. **Download paddlepaddle-gpu**, which will automatically enable OCR
  189. acceleration upon installation.
  190. ::
  191. pip install paddlepaddle-gpu==2.6.1
  192. 2. **Run the following command to test OCR acceleration**:
  193. ::
  194. magic-pdf -p small_ocr.pdf