doc_analyze_by_custom_model.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341
  1. import concurrent.futures as fut
  2. import multiprocessing as mp
  3. import os
  4. import time
  5. import numpy as np
  6. import torch
  7. os.environ['FLAGS_npu_jit_compile'] = '0' # 关闭paddle的jit编译
  8. os.environ['FLAGS_use_stride_kernel'] = '0'
  9. os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 让mps可以fallback
  10. os.environ['NO_ALBUMENTATIONS_UPDATE'] = '1' # 禁止albumentations检查更新
  11. from loguru import logger
  12. from magic_pdf.model.sub_modules.model_utils import get_vram
  13. import magic_pdf.model as model_config
  14. from magic_pdf.data.dataset import Dataset
  15. from magic_pdf.libs.clean_memory import clean_memory
  16. from magic_pdf.libs.config_reader import (get_device, get_formula_config,
  17. get_layout_config,
  18. get_local_models_dir,
  19. get_table_recog_config)
  20. from magic_pdf.model.model_list import MODEL
  21. # from magic_pdf.operators.models import InferenceResult
  22. class ModelSingleton:
  23. _instance = None
  24. _models = {}
  25. def __new__(cls, *args, **kwargs):
  26. if cls._instance is None:
  27. cls._instance = super().__new__(cls)
  28. return cls._instance
  29. def get_model(
  30. self,
  31. ocr: bool,
  32. show_log: bool,
  33. lang=None,
  34. layout_model=None,
  35. formula_enable=None,
  36. table_enable=None,
  37. ):
  38. key = (ocr, show_log, lang, layout_model, formula_enable, table_enable)
  39. if key not in self._models:
  40. self._models[key] = custom_model_init(
  41. ocr=ocr,
  42. show_log=show_log,
  43. lang=lang,
  44. layout_model=layout_model,
  45. formula_enable=formula_enable,
  46. table_enable=table_enable,
  47. )
  48. return self._models[key]
  49. def custom_model_init(
  50. ocr: bool = False,
  51. show_log: bool = False,
  52. lang=None,
  53. layout_model=None,
  54. formula_enable=None,
  55. table_enable=None,
  56. ):
  57. model = None
  58. if model_config.__model_mode__ == 'lite':
  59. logger.warning(
  60. 'The Lite mode is provided for developers to conduct testing only, and the output quality is '
  61. 'not guaranteed to be reliable.'
  62. )
  63. model = MODEL.Paddle
  64. elif model_config.__model_mode__ == 'full':
  65. model = MODEL.PEK
  66. if model_config.__use_inside_model__:
  67. model_init_start = time.time()
  68. if model == MODEL.Paddle:
  69. from magic_pdf.model.pp_structure_v2 import CustomPaddleModel
  70. custom_model = CustomPaddleModel(ocr=ocr, show_log=show_log, lang=lang)
  71. elif model == MODEL.PEK:
  72. from magic_pdf.model.pdf_extract_kit import CustomPEKModel
  73. # 从配置文件读取model-dir和device
  74. local_models_dir = get_local_models_dir()
  75. device = get_device()
  76. layout_config = get_layout_config()
  77. if layout_model is not None:
  78. layout_config['model'] = layout_model
  79. formula_config = get_formula_config()
  80. if formula_enable is not None:
  81. formula_config['enable'] = formula_enable
  82. table_config = get_table_recog_config()
  83. if table_enable is not None:
  84. table_config['enable'] = table_enable
  85. model_input = {
  86. 'ocr': ocr,
  87. 'show_log': show_log,
  88. 'models_dir': local_models_dir,
  89. 'device': device,
  90. 'table_config': table_config,
  91. 'layout_config': layout_config,
  92. 'formula_config': formula_config,
  93. 'lang': lang,
  94. }
  95. custom_model = CustomPEKModel(**model_input)
  96. else:
  97. logger.error('Not allow model_name!')
  98. exit(1)
  99. model_init_cost = time.time() - model_init_start
  100. logger.info(f'model init cost: {model_init_cost}')
  101. else:
  102. logger.error('use_inside_model is False, not allow to use inside model')
  103. exit(1)
  104. return custom_model
  105. def doc_analyze(
  106. dataset: Dataset,
  107. ocr: bool = False,
  108. show_log: bool = False,
  109. start_page_id=0,
  110. end_page_id=None,
  111. lang=None,
  112. layout_model=None,
  113. formula_enable=None,
  114. table_enable=None,
  115. ):
  116. end_page_id = (
  117. end_page_id
  118. if end_page_id is not None and end_page_id >= 0
  119. else len(dataset) - 1
  120. )
  121. MIN_BATCH_INFERENCE_SIZE = int(os.environ.get('MINERU_MIN_BATCH_INFERENCE_SIZE', 100))
  122. images = []
  123. page_wh_list = []
  124. for index in range(len(dataset)):
  125. if start_page_id <= index <= end_page_id:
  126. page_data = dataset.get_page(index)
  127. img_dict = page_data.get_image()
  128. images.append(img_dict['img'])
  129. page_wh_list.append((img_dict['width'], img_dict['height']))
  130. if len(images) >= MIN_BATCH_INFERENCE_SIZE:
  131. batch_size = MIN_BATCH_INFERENCE_SIZE
  132. batch_images = [images[i:i+batch_size] for i in range(0, len(images), batch_size)]
  133. else:
  134. batch_images = [images]
  135. results = []
  136. for sn, batch_image in enumerate(batch_images):
  137. _, result = may_batch_image_analyze(batch_image, sn, ocr, show_log, lang, layout_model, formula_enable, table_enable)
  138. results.extend(result)
  139. model_json = []
  140. for index in range(len(dataset)):
  141. if start_page_id <= index <= end_page_id:
  142. result = results.pop(0)
  143. page_width, page_height = page_wh_list.pop(0)
  144. else:
  145. result = []
  146. page_height = 0
  147. page_width = 0
  148. page_info = {'page_no': index, 'width': page_width, 'height': page_height}
  149. page_dict = {'layout_dets': result, 'page_info': page_info}
  150. model_json.append(page_dict)
  151. from magic_pdf.operators.models import InferenceResult
  152. return InferenceResult(model_json, dataset)
  153. def batch_doc_analyze(
  154. datasets: list[Dataset],
  155. ocr: bool = False,
  156. show_log: bool = False,
  157. lang=None,
  158. layout_model=None,
  159. formula_enable=None,
  160. table_enable=None,
  161. ):
  162. MIN_BATCH_INFERENCE_SIZE = int(os.environ.get('MINERU_MIN_BATCH_INFERENCE_SIZE', 100))
  163. images = []
  164. page_wh_list = []
  165. for dataset in datasets:
  166. for index in range(len(dataset)):
  167. page_data = dataset.get_page(index)
  168. img_dict = page_data.get_image()
  169. images.append(img_dict['img'])
  170. page_wh_list.append((img_dict['width'], img_dict['height']))
  171. if len(images) >= MIN_BATCH_INFERENCE_SIZE:
  172. batch_size = MIN_BATCH_INFERENCE_SIZE
  173. batch_images = [images[i:i+batch_size] for i in range(0, len(images), batch_size)]
  174. else:
  175. batch_images = [images]
  176. results = []
  177. for sn, batch_image in enumerate(batch_images):
  178. _, result = may_batch_image_analyze(batch_image, sn, ocr, show_log, lang, layout_model, formula_enable, table_enable)
  179. results.extend(result)
  180. infer_results = []
  181. from magic_pdf.operators.models import InferenceResult
  182. for index in range(len(datasets)):
  183. dataset = datasets[index]
  184. model_json = []
  185. for i in range(len(dataset)):
  186. result = results.pop(0)
  187. page_width, page_height = page_wh_list.pop(0)
  188. page_info = {'page_no': i, 'width': page_width, 'height': page_height}
  189. page_dict = {'layout_dets': result, 'page_info': page_info}
  190. model_json.append(page_dict)
  191. infer_results.append(InferenceResult(model_json, dataset))
  192. return infer_results
  193. def may_batch_image_analyze(
  194. images: list[np.ndarray],
  195. idx: int,
  196. ocr: bool = False,
  197. show_log: bool = False,
  198. lang=None,
  199. layout_model=None,
  200. formula_enable=None,
  201. table_enable=None):
  202. # os.environ['CUDA_VISIBLE_DEVICES'] = str(idx)
  203. # 关闭paddle的信号处理
  204. import paddle
  205. paddle.disable_signal_handler()
  206. from magic_pdf.model.batch_analyze import BatchAnalyze
  207. model_manager = ModelSingleton()
  208. custom_model = model_manager.get_model(
  209. ocr, show_log, lang, layout_model, formula_enable, table_enable
  210. )
  211. batch_analyze = False
  212. batch_ratio = 1
  213. device = get_device()
  214. if str(device).startswith('npu'):
  215. import torch_npu
  216. if torch_npu.npu.is_available():
  217. torch.npu.set_compile_mode(jit_compile=False)
  218. if str(device).startswith('npu') or str(device).startswith('cuda'):
  219. gpu_memory = int(os.getenv('VIRTUAL_VRAM_SIZE', round(get_vram(device))))
  220. if gpu_memory is not None:
  221. if gpu_memory >= 16:
  222. batch_ratio = 16
  223. elif gpu_memory >= 12:
  224. batch_ratio = 8
  225. elif gpu_memory >= 8:
  226. batch_ratio = 4
  227. elif gpu_memory >= 6:
  228. batch_ratio = 2
  229. else:
  230. batch_ratio = 1
  231. logger.info(f'gpu_memory: {gpu_memory} GB, batch_ratio: {batch_ratio}')
  232. batch_analyze = True
  233. elif str(device).startswith('mps'):
  234. batch_analyze = True
  235. doc_analyze_start = time.time()
  236. if batch_analyze:
  237. """# batch analyze
  238. images = []
  239. page_wh_list = []
  240. for index in range(len(dataset)):
  241. if start_page_id <= index <= end_page_id:
  242. page_data = dataset.get_page(index)
  243. img_dict = page_data.get_image()
  244. images.append(img_dict['img'])
  245. page_wh_list.append((img_dict['width'], img_dict['height']))
  246. """
  247. batch_model = BatchAnalyze(model=custom_model, batch_ratio=batch_ratio)
  248. results = batch_model(images)
  249. """
  250. for index in range(len(dataset)):
  251. if start_page_id <= index <= end_page_id:
  252. result = analyze_result.pop(0)
  253. page_width, page_height = page_wh_list.pop(0)
  254. else:
  255. result = []
  256. page_height = 0
  257. page_width = 0
  258. page_info = {'page_no': index, 'width': page_width, 'height': page_height}
  259. page_dict = {'layout_dets': result, 'page_info': page_info}
  260. model_json.append(page_dict)
  261. """
  262. else:
  263. # single analyze
  264. """
  265. for index in range(len(dataset)):
  266. page_data = dataset.get_page(index)
  267. img_dict = page_data.get_image()
  268. img = img_dict['img']
  269. page_width = img_dict['width']
  270. page_height = img_dict['height']
  271. if start_page_id <= index <= end_page_id:
  272. page_start = time.time()
  273. result = custom_model(img)
  274. logger.info(f'-----page_id : {index}, page total time: {round(time.time() - page_start, 2)}-----')
  275. else:
  276. result = []
  277. page_info = {'page_no': index, 'width': page_width, 'height': page_height}
  278. page_dict = {'layout_dets': result, 'page_info': page_info}
  279. model_json.append(page_dict)
  280. """
  281. results = []
  282. for img_idx, img in enumerate(images):
  283. inference_start = time.time()
  284. result = custom_model(img)
  285. logger.info(f'-----image index : {img_idx}, image inference total time: {round(time.time() - inference_start, 2)}-----')
  286. results.append(result)
  287. gc_start = time.time()
  288. clean_memory(get_device())
  289. gc_time = round(time.time() - gc_start, 2)
  290. logger.info(f'gc time: {gc_time}')
  291. doc_analyze_time = round(time.time() - doc_analyze_start, 2)
  292. doc_analyze_speed = round(len(images) / doc_analyze_time, 2)
  293. logger.info(
  294. f'doc analyze time: {round(time.time() - doc_analyze_start, 2)},'
  295. f' speed: {doc_analyze_speed} pages/second'
  296. )
  297. return (idx, results)