para_split.py 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206
  1. from sklearn.cluster import DBSCAN
  2. import numpy as np
  3. from loguru import logger
  4. from magic_pdf.libs.boxbase import _is_in
  5. LINE_STOP_FLAG = ['.', '!', '?', '。', '!', '?',":", ":", ")", ")", ";"]
  6. INLINE_EQUATION = 'inline_equation'
  7. INTER_EQUATION = "displayed_equation"
  8. TEXT = "text"
  9. def __add_line_period(blocks, layout_bboxes):
  10. """
  11. 为每行添加句号
  12. 如果这个行
  13. 1. 以行内公式结尾,但没有任何标点符号,此时加个句号,认为他就是段落结尾。
  14. """
  15. for block in blocks:
  16. for line in block['lines']:
  17. last_span = line['spans'][-1]
  18. span_type = last_span['type']
  19. if span_type in [TEXT, INLINE_EQUATION]:
  20. span_content = last_span['content'].strip()
  21. if span_type==INLINE_EQUATION and span_content[-1] not in LINE_STOP_FLAG:
  22. if span_type in [INLINE_EQUATION, INTER_EQUATION]:
  23. last_span['content'] = span_content + '.'
  24. def __valign_lines(blocks, layout_bboxes):
  25. """
  26. 对齐行的左侧和右侧。
  27. 扫描行的左侧和右侧,如果x0, x1差距不超过3就强行对齐到所处layout的左右两侧(和layout有一段距离)。
  28. 3是个经验值,TODO,计算得来
  29. """
  30. min_distance = 3
  31. min_sample = 2
  32. for layout_box in layout_bboxes:
  33. blocks_in_layoutbox = [b for b in blocks if _is_in(b['bbox'], layout_box['layout_bbox'])]
  34. if len(blocks_in_layoutbox)==0:
  35. continue
  36. x0_lst = np.array([[line['bbox'][0], 0] for block in blocks_in_layoutbox for line in block['lines']])
  37. x1_lst = np.array([[line['bbox'][2], 0] for block in blocks_in_layoutbox for line in block['lines']])
  38. x0_clusters = DBSCAN(eps=min_distance, min_samples=min_sample).fit(x0_lst)
  39. x1_clusters = DBSCAN(eps=min_distance, min_samples=min_sample).fit(x1_lst)
  40. x0_uniq_label = np.unique(x0_clusters.labels_)
  41. x1_uniq_label = np.unique(x1_clusters.labels_)
  42. x0_2_new_val = {} # 存储旧值对应的新值映射
  43. x1_2_new_val = {}
  44. for label in x0_uniq_label:
  45. if label==-1:
  46. continue
  47. x0_index_of_label = np.where(x0_clusters.labels_==label)
  48. x0_raw_val = x0_lst[x0_index_of_label][:,0]
  49. x0_new_val = np.min(x0_lst[x0_index_of_label][:,0])
  50. x0_2_new_val.update({idx: x0_new_val for idx in x0_raw_val})
  51. for label in x1_uniq_label:
  52. if label==-1:
  53. continue
  54. x1_index_of_label = np.where(x1_clusters.labels_==label)
  55. x1_raw_val = x1_lst[x1_index_of_label][:,0]
  56. x1_new_val = np.max(x1_lst[x1_index_of_label][:,0])
  57. x1_2_new_val.update({idx: x1_new_val for idx in x1_raw_val})
  58. for block in blocks_in_layoutbox:
  59. for line in block['lines']:
  60. x0, x1 = line['bbox'][0], line['bbox'][2]
  61. if x0 in x0_2_new_val:
  62. line['bbox'][0] = int(x0_2_new_val[x0])
  63. if x1 in x1_2_new_val:
  64. line['bbox'][2] = int(x1_2_new_val[x1])
  65. # 其余对不齐的保持不动
  66. # 由于修改了block里的line长度,现在需要重新计算block的bbox
  67. for block in blocks_in_layoutbox:
  68. block['bbox'] = [min([line['bbox'][0] for line in block['lines']]),
  69. min([line['bbox'][1] for line in block['lines']]),
  70. max([line['bbox'][2] for line in block['lines']]),
  71. max([line['bbox'][3] for line in block['lines']])]
  72. def __common_pre_proc(blocks, layout_bboxes):
  73. """
  74. 不分语言的,对文本进行预处理
  75. """
  76. __add_line_period(blocks, layout_bboxes)
  77. __valign_lines(blocks, layout_bboxes)
  78. def __pre_proc_zh_blocks(blocks, layout_bboxes):
  79. """
  80. 对中文文本进行分段预处理
  81. """
  82. pass
  83. def __pre_proc_en_blocks(blocks, layout_bboxes):
  84. """
  85. 对英文文本进行分段预处理
  86. """
  87. pass
  88. def __group_line_by_layout(blocks, layout_bboxes, lang="en"):
  89. """
  90. 每个layout内的行进行聚合
  91. """
  92. # 因为只是一个block一行目前, 一个block就是一个段落
  93. lines_group = []
  94. for lyout in layout_bboxes:
  95. lines = [line for block in blocks if _is_in(block['bbox'], lyout['layout_bbox']) for line in block['lines']]
  96. lines_group.append(lines)
  97. return lines_group
  98. def __split_para_in_layoutbox(lines_group, layout_bboxes, lang="en", char_avg_len=10):
  99. """
  100. lines_group 进行行分段——layout内部进行分段。
  101. 1. 先计算每个group的左右边界。
  102. 2. 然后根据行末尾特征进行分段。
  103. 末尾特征:以句号等结束符结尾。并且距离右侧边界有一定距离。
  104. """
  105. def get_span_text(span):
  106. c = span.get('content', '')
  107. if len(c)==0:
  108. c = span.get('image-path', '')
  109. return c
  110. paras = []
  111. right_tail_distance = 1.5 * char_avg_len
  112. for lines in lines_group:
  113. if len(lines)==0:
  114. continue
  115. layout_right = max([line['bbox'][2] for line in lines])
  116. para = [] # 元素是line
  117. for line in lines:
  118. line_text = ''.join([get_span_text(span) for span in line['spans']])
  119. #logger.info(line_text)
  120. last_span_type = line['spans'][-1]['type']
  121. if last_span_type in [TEXT, INLINE_EQUATION]:
  122. last_char = line['spans'][-1]['content'][-1]
  123. if last_char in LINE_STOP_FLAG or line['bbox'][2] < layout_right - right_tail_distance:
  124. para.append(line)
  125. paras.append(para)
  126. # para_text = ''.join([span['content'] for line in para for span in line['spans']])
  127. # logger.info(para_text)
  128. para = []
  129. else:
  130. para.append(line)
  131. else: # 其他,图片、表格、行间公式,各自占一段
  132. para.append(line)
  133. paras.append(para)
  134. # para_text = ''.join([get_span_text(span) for line in para for span in line['spans']])
  135. # logger.info(para_text)
  136. para = []
  137. if len(para)>0:
  138. paras.append(para)
  139. # para_text = ''.join([get_span_text(span) for line in para for span in line['spans']])
  140. # logger.info(para_text)
  141. para = []
  142. return paras
  143. def __do_split(blocks, layout_bboxes, lang="en"):
  144. """
  145. 根据line和layout情况进行分段
  146. 先实现一个根据行末尾特征分段的简单方法。
  147. """
  148. """
  149. 算法思路:
  150. 1. 扫描layout里每一行,找出来行尾距离layout有边界有一定距离的行。
  151. 2. 从上述行中找到末尾是句号等可作为断行标志的行。
  152. 3. 参照上述行尾特征进行分段。
  153. 4. 图、表,目前独占一行,不考虑分段。
  154. """
  155. lines_group = __group_line_by_layout(blocks, layout_bboxes, lang) # block内分段
  156. layout_paras = __split_para_in_layoutbox(lines_group, layout_bboxes, lang) # block间连接分段
  157. return layout_paras
  158. def para_split(blocks, layout_bboxes, lang="en"):
  159. """
  160. 根据line和layout情况进行分段
  161. """
  162. __common_pre_proc(blocks, layout_bboxes)
  163. if lang=='en':
  164. __do_split(blocks, layout_bboxes, lang)
  165. elif lang=='zh':
  166. __do_split(blocks, layout_bboxes, lang)
  167. splited_blocks = __do_split(blocks, layout_bboxes, lang)
  168. return splited_blocks