| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206 |
- from sklearn.cluster import DBSCAN
- import numpy as np
- from loguru import logger
- from magic_pdf.libs.boxbase import _is_in
- LINE_STOP_FLAG = ['.', '!', '?', '。', '!', '?',":", ":", ")", ")", ";"]
- INLINE_EQUATION = 'inline_equation'
- INTER_EQUATION = "displayed_equation"
- TEXT = "text"
- def __add_line_period(blocks, layout_bboxes):
- """
- 为每行添加句号
- 如果这个行
- 1. 以行内公式结尾,但没有任何标点符号,此时加个句号,认为他就是段落结尾。
- """
- for block in blocks:
- for line in block['lines']:
- last_span = line['spans'][-1]
- span_type = last_span['type']
- if span_type in [TEXT, INLINE_EQUATION]:
- span_content = last_span['content'].strip()
- if span_type==INLINE_EQUATION and span_content[-1] not in LINE_STOP_FLAG:
- if span_type in [INLINE_EQUATION, INTER_EQUATION]:
- last_span['content'] = span_content + '.'
- def __valign_lines(blocks, layout_bboxes):
- """
- 对齐行的左侧和右侧。
- 扫描行的左侧和右侧,如果x0, x1差距不超过3就强行对齐到所处layout的左右两侧(和layout有一段距离)。
- 3是个经验值,TODO,计算得来
-
- """
-
- min_distance = 3
- min_sample = 2
-
- for layout_box in layout_bboxes:
- blocks_in_layoutbox = [b for b in blocks if _is_in(b['bbox'], layout_box['layout_bbox'])]
- if len(blocks_in_layoutbox)==0:
- continue
-
- x0_lst = np.array([[line['bbox'][0], 0] for block in blocks_in_layoutbox for line in block['lines']])
- x1_lst = np.array([[line['bbox'][2], 0] for block in blocks_in_layoutbox for line in block['lines']])
- x0_clusters = DBSCAN(eps=min_distance, min_samples=min_sample).fit(x0_lst)
- x1_clusters = DBSCAN(eps=min_distance, min_samples=min_sample).fit(x1_lst)
- x0_uniq_label = np.unique(x0_clusters.labels_)
- x1_uniq_label = np.unique(x1_clusters.labels_)
-
- x0_2_new_val = {} # 存储旧值对应的新值映射
- x1_2_new_val = {}
- for label in x0_uniq_label:
- if label==-1:
- continue
- x0_index_of_label = np.where(x0_clusters.labels_==label)
- x0_raw_val = x0_lst[x0_index_of_label][:,0]
- x0_new_val = np.min(x0_lst[x0_index_of_label][:,0])
- x0_2_new_val.update({idx: x0_new_val for idx in x0_raw_val})
- for label in x1_uniq_label:
- if label==-1:
- continue
- x1_index_of_label = np.where(x1_clusters.labels_==label)
- x1_raw_val = x1_lst[x1_index_of_label][:,0]
- x1_new_val = np.max(x1_lst[x1_index_of_label][:,0])
- x1_2_new_val.update({idx: x1_new_val for idx in x1_raw_val})
-
- for block in blocks_in_layoutbox:
- for line in block['lines']:
- x0, x1 = line['bbox'][0], line['bbox'][2]
- if x0 in x0_2_new_val:
- line['bbox'][0] = int(x0_2_new_val[x0])
- if x1 in x1_2_new_val:
- line['bbox'][2] = int(x1_2_new_val[x1])
- # 其余对不齐的保持不动
-
- # 由于修改了block里的line长度,现在需要重新计算block的bbox
- for block in blocks_in_layoutbox:
- block['bbox'] = [min([line['bbox'][0] for line in block['lines']]),
- min([line['bbox'][1] for line in block['lines']]),
- max([line['bbox'][2] for line in block['lines']]),
- max([line['bbox'][3] for line in block['lines']])]
- def __common_pre_proc(blocks, layout_bboxes):
- """
- 不分语言的,对文本进行预处理
- """
- __add_line_period(blocks, layout_bboxes)
- __valign_lines(blocks, layout_bboxes)
-
- def __pre_proc_zh_blocks(blocks, layout_bboxes):
- """
- 对中文文本进行分段预处理
- """
- pass
- def __pre_proc_en_blocks(blocks, layout_bboxes):
- """
- 对英文文本进行分段预处理
- """
- pass
- def __group_line_by_layout(blocks, layout_bboxes, lang="en"):
- """
- 每个layout内的行进行聚合
- """
- # 因为只是一个block一行目前, 一个block就是一个段落
- lines_group = []
-
- for lyout in layout_bboxes:
- lines = [line for block in blocks if _is_in(block['bbox'], lyout['layout_bbox']) for line in block['lines']]
- lines_group.append(lines)
- return lines_group
-
- def __split_para_in_layoutbox(lines_group, layout_bboxes, lang="en", char_avg_len=10):
- """
- lines_group 进行行分段——layout内部进行分段。
- 1. 先计算每个group的左右边界。
- 2. 然后根据行末尾特征进行分段。
- 末尾特征:以句号等结束符结尾。并且距离右侧边界有一定距离。
-
- """
- def get_span_text(span):
- c = span.get('content', '')
- if len(c)==0:
- c = span.get('image-path', '')
-
- return c
-
- paras = []
- right_tail_distance = 1.5 * char_avg_len
- for lines in lines_group:
- if len(lines)==0:
- continue
- layout_right = max([line['bbox'][2] for line in lines])
- para = [] # 元素是line
- for line in lines:
- line_text = ''.join([get_span_text(span) for span in line['spans']])
- #logger.info(line_text)
- last_span_type = line['spans'][-1]['type']
- if last_span_type in [TEXT, INLINE_EQUATION]:
- last_char = line['spans'][-1]['content'][-1]
- if last_char in LINE_STOP_FLAG or line['bbox'][2] < layout_right - right_tail_distance:
- para.append(line)
- paras.append(para)
- # para_text = ''.join([span['content'] for line in para for span in line['spans']])
- # logger.info(para_text)
- para = []
- else:
- para.append(line)
- else: # 其他,图片、表格、行间公式,各自占一段
- para.append(line)
- paras.append(para)
- # para_text = ''.join([get_span_text(span) for line in para for span in line['spans']])
- # logger.info(para_text)
- para = []
- if len(para)>0:
- paras.append(para)
- # para_text = ''.join([get_span_text(span) for line in para for span in line['spans']])
- # logger.info(para_text)
- para = []
-
- return paras
-
- def __do_split(blocks, layout_bboxes, lang="en"):
- """
- 根据line和layout情况进行分段
- 先实现一个根据行末尾特征分段的简单方法。
- """
- """
- 算法思路:
- 1. 扫描layout里每一行,找出来行尾距离layout有边界有一定距离的行。
- 2. 从上述行中找到末尾是句号等可作为断行标志的行。
- 3. 参照上述行尾特征进行分段。
- 4. 图、表,目前独占一行,不考虑分段。
- """
- lines_group = __group_line_by_layout(blocks, layout_bboxes, lang) # block内分段
- layout_paras = __split_para_in_layoutbox(lines_group, layout_bboxes, lang) # block间连接分段
-
- return layout_paras
-
-
- def para_split(blocks, layout_bboxes, lang="en"):
- """
- 根据line和layout情况进行分段
- """
- __common_pre_proc(blocks, layout_bboxes)
- if lang=='en':
- __do_split(blocks, layout_bboxes, lang)
- elif lang=='zh':
- __do_split(blocks, layout_bboxes, lang)
-
- splited_blocks = __do_split(blocks, layout_bboxes, lang)
-
- return splited_blocks
|