| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235 |
- import os
- import time
- import numpy as np
- import torch
- from mineru.backend.pipeline.model_init import MineruPipelineModel
- os.environ['FLAGS_npu_jit_compile'] = '0' # 关闭paddle的jit编译
- os.environ['FLAGS_use_stride_kernel'] = '0'
- os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 让mps可以fallback
- os.environ['NO_ALBUMENTATIONS_UPDATE'] = '1' # 禁止albumentations检查更新
- from loguru import logger
- from ...utils.model_utils import get_vram, clean_memory
- from magic_pdf.libs.config_reader import (get_device, get_formula_config,
- get_layout_config,
- get_local_models_dir,
- get_table_recog_config)
- class ModelSingleton:
- _instance = None
- _models = {}
- def __new__(cls, *args, **kwargs):
- if cls._instance is None:
- cls._instance = super().__new__(cls)
- return cls._instance
- def get_model(
- self,
- lang=None,
- formula_enable=None,
- table_enable=None,
- ):
- key = (lang, formula_enable, table_enable)
- if key not in self._models:
- self._models[key] = custom_model_init(
- lang=lang,
- formula_enable=formula_enable,
- table_enable=table_enable,
- )
- return self._models[key]
- def custom_model_init(
- lang=None,
- formula_enable=None,
- table_enable=None,
- ):
- model_init_start = time.time()
- # 从配置文件读取model-dir和device
- local_models_dir = get_local_models_dir()
- device = get_device()
- formula_config = get_formula_config()
- if formula_enable is not None:
- formula_config['enable'] = formula_enable
- table_config = get_table_recog_config()
- if table_enable is not None:
- table_config['enable'] = table_enable
- model_input = {
- 'models_dir': local_models_dir,
- 'device': device,
- 'table_config': table_config,
- 'formula_config': formula_config,
- 'lang': lang,
- }
- custom_model = MineruPipelineModel(**model_input)
- model_init_cost = time.time() - model_init_start
- logger.info(f'model init cost: {model_init_cost}')
- return custom_model
- def doc_analyze(
- dataset: Dataset,
- ocr: bool = False,
- start_page_id=0,
- end_page_id=None,
- lang=None,
- formula_enable=None,
- table_enable=None,
- ):
- end_page_id = (
- end_page_id
- if end_page_id is not None and end_page_id >= 0
- else len(dataset) - 1
- )
- MIN_BATCH_INFERENCE_SIZE = int(os.environ.get('MINERU_MIN_BATCH_INFERENCE_SIZE', 100))
- images = []
- page_wh_list = []
- for index in range(len(dataset)):
- if start_page_id <= index <= end_page_id:
- page_data = dataset.get_page(index)
- img_dict = page_data.get_image()
- images.append(img_dict['img'])
- page_wh_list.append((img_dict['width'], img_dict['height']))
- images_with_extra_info = [(images[index], ocr, dataset._lang) for index in range(len(images))]
- if len(images) >= MIN_BATCH_INFERENCE_SIZE:
- batch_size = MIN_BATCH_INFERENCE_SIZE
- batch_images = [images_with_extra_info[i:i+batch_size] for i in range(0, len(images_with_extra_info), batch_size)]
- else:
- batch_images = [images_with_extra_info]
- results = []
- processed_images_count = 0
- for index, batch_image in enumerate(batch_images):
- processed_images_count += len(batch_image)
- logger.info(f'Batch {index + 1}/{len(batch_images)}: {processed_images_count} pages/{len(images_with_extra_info)} pages')
- result = may_batch_image_analyze(batch_image, formula_enable, table_enable)
- results.extend(result)
- model_json = []
- for index in range(len(dataset)):
- if start_page_id <= index <= end_page_id:
- result = results.pop(0)
- page_width, page_height = page_wh_list.pop(0)
- else:
- result = []
- page_height = 0
- page_width = 0
- page_info = {'page_no': index, 'width': page_width, 'height': page_height}
- page_dict = {'layout_dets': result, 'page_info': page_info}
- model_json.append(page_dict)
- return model_json
- def batch_doc_analyze(
- datasets: list[Dataset],
- parse_method: str = 'auto',
- lang=None,
- formula_enable=None,
- table_enable=None,
- ):
- MIN_BATCH_INFERENCE_SIZE = int(os.environ.get('MINERU_MIN_BATCH_INFERENCE_SIZE', 100))
- batch_size = MIN_BATCH_INFERENCE_SIZE
- page_wh_list = []
- images_with_extra_info = []
- for dataset in datasets:
- ocr = False
- if parse_method == 'auto':
- if dataset.classify() == 'txt':
- ocr = False
- elif dataset.classify() == 'ocr':
- ocr = True
- elif parse_method == 'ocr':
- ocr = True
- elif parse_method == 'txt':
- ocr = False
- _lang = dataset._lang
- for index in range(len(dataset)):
- page_data = dataset.get_page(index)
- img_dict = page_data.get_image()
- page_wh_list.append((img_dict['width'], img_dict['height']))
- images_with_extra_info.append((img_dict['img'], ocr, _lang))
- batch_images = [images_with_extra_info[i:i+batch_size] for i in range(0, len(images_with_extra_info), batch_size)]
- results = []
- processed_images_count = 0
- for index, batch_image in enumerate(batch_images):
- processed_images_count += len(batch_image)
- logger.info(f'Batch {index + 1}/{len(batch_images)}: {processed_images_count} pages/{len(images_with_extra_info)} pages')
- result = may_batch_image_analyze(batch_image, formula_enable, table_enable)
- results.extend(result)
- infer_results = []
- for index in range(len(datasets)):
- dataset = datasets[index]
- model_json = []
- for i in range(len(dataset)):
- result = results.pop(0)
- page_width, page_height = page_wh_list.pop(0)
- page_info = {'page_no': i, 'width': page_width, 'height': page_height}
- page_dict = {'layout_dets': result, 'page_info': page_info}
- model_json.append(page_dict)
- infer_results.append(model_json)
- return infer_results
- def may_batch_image_analyze(
- images_with_extra_info: list[(np.ndarray, bool, str)],
- formula_enable=None,
- table_enable=None):
- # os.environ['CUDA_VISIBLE_DEVICES'] = str(idx)
- from .batch_analyze import BatchAnalyze
- model_manager = ModelSingleton()
- batch_ratio = 1
- device = get_device()
- if str(device).startswith('npu'):
- import torch_npu
- if torch_npu.npu.is_available():
- torch.npu.set_compile_mode(jit_compile=False)
- if str(device).startswith('npu') or str(device).startswith('cuda'):
- vram = get_vram(device)
- if vram is not None:
- gpu_memory = int(os.getenv('VIRTUAL_VRAM_SIZE', round(vram)))
- if gpu_memory >= 16:
- batch_ratio = 16
- elif gpu_memory >= 12:
- batch_ratio = 8
- elif gpu_memory >= 8:
- batch_ratio = 4
- elif gpu_memory >= 6:
- batch_ratio = 2
- else:
- batch_ratio = 1
- logger.info(f'gpu_memory: {gpu_memory} GB, batch_ratio: {batch_ratio}')
- else:
- # Default batch_ratio when VRAM can't be determined
- batch_ratio = 1
- logger.info(f'Could not determine GPU memory, using default batch_ratio: {batch_ratio}')
- batch_model = BatchAnalyze(model_manager, batch_ratio, formula_enable, table_enable)
- results = batch_model(images_with_extra_info)
- clean_memory(get_device())
- return results
|