| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339 |
- import sys
- import numpy as np
- import time
- import torch
- from ...pytorchocr.base_ocr_v20 import BaseOCRV20
- from . import pytorchocr_utility as utility
- from ...pytorchocr.data import create_operators, transform
- from ...pytorchocr.postprocess import build_post_process
- class TextDetector(BaseOCRV20):
- def __init__(self, args, **kwargs):
- self.args = args
- self.det_algorithm = args.det_algorithm
- self.device = args.device
- pre_process_list = [{
- 'DetResizeForTest': {
- 'limit_side_len': args.det_limit_side_len,
- 'limit_type': args.det_limit_type,
- }
- }, {
- 'NormalizeImage': {
- 'std': [0.229, 0.224, 0.225],
- 'mean': [0.485, 0.456, 0.406],
- 'scale': '1./255.',
- 'order': 'hwc'
- }
- }, {
- 'ToCHWImage': None
- }, {
- 'KeepKeys': {
- 'keep_keys': ['image', 'shape']
- }
- }]
- postprocess_params = {}
- if self.det_algorithm == "DB":
- postprocess_params['name'] = 'DBPostProcess'
- postprocess_params["thresh"] = args.det_db_thresh
- postprocess_params["box_thresh"] = args.det_db_box_thresh
- postprocess_params["max_candidates"] = 1000
- postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio
- postprocess_params["use_dilation"] = args.use_dilation
- postprocess_params["score_mode"] = args.det_db_score_mode
- elif self.det_algorithm == "DB++":
- postprocess_params['name'] = 'DBPostProcess'
- postprocess_params["thresh"] = args.det_db_thresh
- postprocess_params["box_thresh"] = args.det_db_box_thresh
- postprocess_params["max_candidates"] = 1000
- postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio
- postprocess_params["use_dilation"] = args.use_dilation
- postprocess_params["score_mode"] = args.det_db_score_mode
- pre_process_list[1] = {
- 'NormalizeImage': {
- 'std': [1.0, 1.0, 1.0],
- 'mean':
- [0.48109378172549, 0.45752457890196, 0.40787054090196],
- 'scale': '1./255.',
- 'order': 'hwc'
- }
- }
- elif self.det_algorithm == "EAST":
- postprocess_params['name'] = 'EASTPostProcess'
- postprocess_params["score_thresh"] = args.det_east_score_thresh
- postprocess_params["cover_thresh"] = args.det_east_cover_thresh
- postprocess_params["nms_thresh"] = args.det_east_nms_thresh
- elif self.det_algorithm == "SAST":
- pre_process_list[0] = {
- 'DetResizeForTest': {
- 'resize_long': args.det_limit_side_len
- }
- }
- postprocess_params['name'] = 'SASTPostProcess'
- postprocess_params["score_thresh"] = args.det_sast_score_thresh
- postprocess_params["nms_thresh"] = args.det_sast_nms_thresh
- self.det_sast_polygon = args.det_sast_polygon
- if self.det_sast_polygon:
- postprocess_params["sample_pts_num"] = 6
- postprocess_params["expand_scale"] = 1.2
- postprocess_params["shrink_ratio_of_width"] = 0.2
- else:
- postprocess_params["sample_pts_num"] = 2
- postprocess_params["expand_scale"] = 1.0
- postprocess_params["shrink_ratio_of_width"] = 0.3
- elif self.det_algorithm == "PSE":
- postprocess_params['name'] = 'PSEPostProcess'
- postprocess_params["thresh"] = args.det_pse_thresh
- postprocess_params["box_thresh"] = args.det_pse_box_thresh
- postprocess_params["min_area"] = args.det_pse_min_area
- postprocess_params["box_type"] = args.det_pse_box_type
- postprocess_params["scale"] = args.det_pse_scale
- self.det_pse_box_type = args.det_pse_box_type
- elif self.det_algorithm == "FCE":
- pre_process_list[0] = {
- 'DetResizeForTest': {
- 'rescale_img': [1080, 736]
- }
- }
- postprocess_params['name'] = 'FCEPostProcess'
- postprocess_params["scales"] = args.scales
- postprocess_params["alpha"] = args.alpha
- postprocess_params["beta"] = args.beta
- postprocess_params["fourier_degree"] = args.fourier_degree
- postprocess_params["box_type"] = args.det_fce_box_type
- else:
- print("unknown det_algorithm:{}".format(self.det_algorithm))
- sys.exit(0)
- self.preprocess_op = create_operators(pre_process_list)
- self.postprocess_op = build_post_process(postprocess_params)
- self.weights_path = args.det_model_path
- self.yaml_path = args.det_yaml_path
- network_config = utility.get_arch_config(self.weights_path)
- super(TextDetector, self).__init__(network_config, **kwargs)
- self.load_pytorch_weights(self.weights_path)
- self.net.eval()
- self.net.to(self.device)
- def _batch_process_same_size(self, img_list):
- """
- 对相同尺寸的图像进行批处理
- Args:
- img_list: 相同尺寸的图像列表
- Returns:
- batch_results: 批处理结果列表
- total_elapse: 总耗时
- """
- starttime = time.time()
- # 预处理所有图像
- batch_data = []
- batch_shapes = []
- ori_imgs = []
- for img in img_list:
- ori_im = img.copy()
- ori_imgs.append(ori_im)
- data = {'image': img}
- data = transform(data, self.preprocess_op)
- if data is None:
- # 如果预处理失败,返回空结果
- return [(None, 0) for _ in img_list], 0
- img_processed, shape_list = data
- batch_data.append(img_processed)
- batch_shapes.append(shape_list)
- # 堆叠成批处理张量
- try:
- batch_tensor = np.stack(batch_data, axis=0)
- batch_shapes = np.stack(batch_shapes, axis=0)
- except Exception as e:
- # 如果堆叠失败,回退到逐个处理
- batch_results = []
- for img in img_list:
- dt_boxes, elapse = self.__call__(img)
- batch_results.append((dt_boxes, elapse))
- return batch_results, time.time() - starttime
- # 批处理推理
- with torch.no_grad():
- inp = torch.from_numpy(batch_tensor)
- inp = inp.to(self.device)
- outputs = self.net(inp)
- # 处理输出
- preds = {}
- if self.det_algorithm == "EAST":
- preds['f_geo'] = outputs['f_geo'].cpu().numpy()
- preds['f_score'] = outputs['f_score'].cpu().numpy()
- elif self.det_algorithm == 'SAST':
- preds['f_border'] = outputs['f_border'].cpu().numpy()
- preds['f_score'] = outputs['f_score'].cpu().numpy()
- preds['f_tco'] = outputs['f_tco'].cpu().numpy()
- preds['f_tvo'] = outputs['f_tvo'].cpu().numpy()
- elif self.det_algorithm in ['DB', 'PSE', 'DB++']:
- preds['maps'] = outputs['maps'].cpu().numpy()
- elif self.det_algorithm == 'FCE':
- for i, (k, output) in enumerate(outputs.items()):
- preds['level_{}'.format(i)] = output.cpu().numpy()
- else:
- raise NotImplementedError
- # 后处理每个图像的结果
- batch_results = []
- total_elapse = time.time() - starttime
- for i in range(len(img_list)):
- # 提取单个图像的预测结果
- single_preds = {}
- for key, value in preds.items():
- if isinstance(value, np.ndarray):
- single_preds[key] = value[i:i + 1] # 保持批次维度
- else:
- single_preds[key] = value
- # 后处理
- post_result = self.postprocess_op(single_preds, batch_shapes[i:i + 1])
- dt_boxes = post_result[0]['points']
- # 过滤和裁剪检测框
- if (self.det_algorithm == "SAST" and
- self.det_sast_polygon) or (self.det_algorithm in ["PSE", "FCE"] and
- self.postprocess_op.box_type == 'poly'):
- dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, ori_imgs[i].shape)
- else:
- dt_boxes = self.filter_tag_det_res(dt_boxes, ori_imgs[i].shape)
- batch_results.append((dt_boxes, total_elapse / len(img_list)))
- return batch_results, total_elapse
- def batch_predict(self, img_list, max_batch_size=8):
- """
- 批处理预测方法,支持多张图像同时检测
- Args:
- img_list: 图像列表
- max_batch_size: 最大批处理大小
- Returns:
- batch_results: 批处理结果列表,每个元素为(dt_boxes, elapse)
- """
- if not img_list:
- return []
- batch_results = []
- # 分批处理
- for i in range(0, len(img_list), max_batch_size):
- batch_imgs = img_list[i:i + max_batch_size]
- # assert尺寸一致
- batch_dt_boxes, batch_elapse = self._batch_process_same_size(batch_imgs)
- batch_results.extend(batch_dt_boxes)
- return batch_results
- def order_points_clockwise(self, pts):
- """
- reference from: https://github.com/jrosebr1/imutils/blob/master/imutils/perspective.py
- # sort the points based on their x-coordinates
- """
- xSorted = pts[np.argsort(pts[:, 0]), :]
- # grab the left-most and right-most points from the sorted
- # x-roodinate points
- leftMost = xSorted[:2, :]
- rightMost = xSorted[2:, :]
- # now, sort the left-most coordinates according to their
- # y-coordinates so we can grab the top-left and bottom-left
- # points, respectively
- leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
- (tl, bl) = leftMost
- rightMost = rightMost[np.argsort(rightMost[:, 1]), :]
- (tr, br) = rightMost
- rect = np.array([tl, tr, br, bl], dtype="float32")
- return rect
- def clip_det_res(self, points, img_height, img_width):
- for pno in range(points.shape[0]):
- points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
- points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
- return points
- def filter_tag_det_res(self, dt_boxes, image_shape):
- img_height, img_width = image_shape[0:2]
- dt_boxes_new = []
- for box in dt_boxes:
- box = self.order_points_clockwise(box)
- box = self.clip_det_res(box, img_height, img_width)
- rect_width = int(np.linalg.norm(box[0] - box[1]))
- rect_height = int(np.linalg.norm(box[0] - box[3]))
- if rect_width <= 3 or rect_height <= 3:
- continue
- dt_boxes_new.append(box)
- dt_boxes = np.array(dt_boxes_new)
- return dt_boxes
- def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
- img_height, img_width = image_shape[0:2]
- dt_boxes_new = []
- for box in dt_boxes:
- box = self.clip_det_res(box, img_height, img_width)
- dt_boxes_new.append(box)
- dt_boxes = np.array(dt_boxes_new)
- return dt_boxes
- def __call__(self, img):
- ori_im = img.copy()
- data = {'image': img}
- data = transform(data, self.preprocess_op)
- img, shape_list = data
- if img is None:
- return None, 0
- img = np.expand_dims(img, axis=0)
- shape_list = np.expand_dims(shape_list, axis=0)
- img = img.copy()
- starttime = time.time()
- with torch.no_grad():
- inp = torch.from_numpy(img)
- inp = inp.to(self.device)
- outputs = self.net(inp)
- preds = {}
- if self.det_algorithm == "EAST":
- preds['f_geo'] = outputs['f_geo'].cpu().numpy()
- preds['f_score'] = outputs['f_score'].cpu().numpy()
- elif self.det_algorithm == 'SAST':
- preds['f_border'] = outputs['f_border'].cpu().numpy()
- preds['f_score'] = outputs['f_score'].cpu().numpy()
- preds['f_tco'] = outputs['f_tco'].cpu().numpy()
- preds['f_tvo'] = outputs['f_tvo'].cpu().numpy()
- elif self.det_algorithm in ['DB', 'PSE', 'DB++']:
- preds['maps'] = outputs['maps'].cpu().numpy()
- elif self.det_algorithm == 'FCE':
- for i, (k, output) in enumerate(outputs.items()):
- preds['level_{}'.format(i)] = output
- else:
- raise NotImplementedError
- post_result = self.postprocess_op(preds, shape_list)
- dt_boxes = post_result[0]['points']
- if (self.det_algorithm == "SAST" and
- self.det_sast_polygon) or (self.det_algorithm in ["PSE", "FCE"] and
- self.postprocess_op.box_type == 'poly'):
- dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, ori_im.shape)
- else:
- dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
- elapse = time.time() - starttime
- return dt_boxes, elapse
|