batch_analyze.py 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453
  1. import html
  2. import cv2
  3. from loguru import logger
  4. from tqdm import tqdm
  5. from collections import defaultdict
  6. import numpy as np
  7. from .model_init import AtomModelSingleton
  8. from .model_list import AtomicModel
  9. from ...utils.config_reader import get_formula_enable, get_table_enable
  10. from ...utils.model_utils import crop_img, get_res_list_from_layout_res, clean_vram
  11. from ...utils.ocr_utils import merge_det_boxes, update_det_boxes, sorted_boxes
  12. from ...utils.ocr_utils import get_adjusted_mfdetrec_res, get_ocr_result_list, OcrConfidence, get_rotate_crop_image
  13. from ...utils.pdf_image_tools import get_crop_np_img
  14. YOLO_LAYOUT_BASE_BATCH_SIZE = 1
  15. MFD_BASE_BATCH_SIZE = 1
  16. MFR_BASE_BATCH_SIZE = 16
  17. OCR_DET_BASE_BATCH_SIZE = 16
  18. TABLE_ORI_CLS_BATCH_SIZE = 16
  19. TABLE_Wired_Wireless_CLS_BATCH_SIZE = 16
  20. class BatchAnalyze:
  21. def __init__(self, model_manager, batch_ratio: int, formula_enable, table_enable, enable_ocr_det_batch: bool = True):
  22. self.batch_ratio = batch_ratio
  23. self.formula_enable = get_formula_enable(formula_enable)
  24. self.table_enable = get_table_enable(table_enable)
  25. self.model_manager = model_manager
  26. self.enable_ocr_det_batch = enable_ocr_det_batch
  27. def __call__(self, images_with_extra_info: list) -> list:
  28. if len(images_with_extra_info) == 0:
  29. return []
  30. images_layout_res = []
  31. self.model = self.model_manager.get_model(
  32. lang=None,
  33. formula_enable=self.formula_enable,
  34. table_enable=self.table_enable,
  35. )
  36. atom_model_manager = AtomModelSingleton()
  37. pil_images = [image for image, _, _ in images_with_extra_info]
  38. np_images = [np.asarray(image) for image, _, _ in images_with_extra_info]
  39. # doclayout_yolo
  40. images_layout_res += self.model.layout_model.batch_predict(
  41. pil_images, YOLO_LAYOUT_BASE_BATCH_SIZE
  42. )
  43. if self.formula_enable:
  44. # 公式检测
  45. images_mfd_res = self.model.mfd_model.batch_predict(
  46. np_images, MFD_BASE_BATCH_SIZE
  47. )
  48. # 公式识别
  49. images_formula_list = self.model.mfr_model.batch_predict(
  50. images_mfd_res,
  51. np_images,
  52. batch_size=self.batch_ratio * MFR_BASE_BATCH_SIZE,
  53. )
  54. mfr_count = 0
  55. for image_index in range(len(np_images)):
  56. images_layout_res[image_index] += images_formula_list[image_index]
  57. mfr_count += len(images_formula_list[image_index])
  58. # 清理显存
  59. clean_vram(self.model.device, vram_threshold=8)
  60. ocr_res_list_all_page = []
  61. table_res_list_all_page = []
  62. for index in range(len(np_images)):
  63. _, ocr_enable, _lang = images_with_extra_info[index]
  64. layout_res = images_layout_res[index]
  65. np_img = np_images[index]
  66. ocr_res_list, table_res_list, single_page_mfdetrec_res = (
  67. get_res_list_from_layout_res(layout_res)
  68. )
  69. ocr_res_list_all_page.append({'ocr_res_list':ocr_res_list,
  70. 'lang':_lang,
  71. 'ocr_enable':ocr_enable,
  72. 'np_img':np_img,
  73. 'single_page_mfdetrec_res':single_page_mfdetrec_res,
  74. 'layout_res':layout_res,
  75. })
  76. for table_res in table_res_list:
  77. def get_crop_table_img(scale):
  78. crop_xmin, crop_ymin = int(table_res['poly'][0]), int(table_res['poly'][1])
  79. crop_xmax, crop_ymax = int(table_res['poly'][4]), int(table_res['poly'][5])
  80. bbox = (int(crop_xmin / scale), int(crop_ymin / scale), int(crop_xmax / scale), int(crop_ymax / scale))
  81. return get_crop_np_img(bbox, np_img, scale=scale)
  82. wireless_table_img = get_crop_table_img(scale = 1)
  83. wired_table_img = get_crop_table_img(scale = 10/3)
  84. table_res_list_all_page.append({'table_res':table_res,
  85. 'lang':_lang,
  86. 'table_img':wireless_table_img,
  87. 'wired_table_img':wired_table_img,
  88. })
  89. # 表格识别 table recognition
  90. if self.table_enable:
  91. # 图片旋转批量处理
  92. img_orientation_cls_model = atom_model_manager.get_atom_model(
  93. atom_model_name=AtomicModel.ImgOrientationCls,
  94. )
  95. try:
  96. import torch
  97. from packaging import version
  98. if version.parse(torch.__version__) >= version.parse("2.8.0"):
  99. for table_res in table_res_list_all_page:
  100. rotate_label = img_orientation_cls_model.predict(table_res['table_img'])
  101. img_orientation_cls_model.img_rotate(table_res, rotate_label)
  102. else:
  103. img_orientation_cls_model.batch_predict(table_res_list_all_page,
  104. det_batch_size=self.batch_ratio * OCR_DET_BASE_BATCH_SIZE,
  105. batch_size=TABLE_ORI_CLS_BATCH_SIZE)
  106. except Exception as e:
  107. logger.warning(
  108. f"Image orientation classification failed: {e}, using original image"
  109. )
  110. # 表格分类
  111. table_cls_model = atom_model_manager.get_atom_model(
  112. atom_model_name=AtomicModel.TableCls,
  113. )
  114. try:
  115. table_cls_model.batch_predict(table_res_list_all_page,
  116. batch_size=TABLE_Wired_Wireless_CLS_BATCH_SIZE)
  117. except Exception as e:
  118. logger.warning(
  119. f"Table classification failed: {e}, using default model"
  120. )
  121. # OCR det 过程,顺序执行
  122. rec_img_lang_group = defaultdict(list)
  123. det_ocr_engine = atom_model_manager.get_atom_model(
  124. atom_model_name=AtomicModel.OCR,
  125. det_db_box_thresh=0.5,
  126. det_db_unclip_ratio=1.6,
  127. enable_merge_det_boxes=False,
  128. )
  129. for index, table_res_dict in enumerate(
  130. tqdm(table_res_list_all_page, desc="Table-ocr det")
  131. ):
  132. bgr_image = cv2.cvtColor(table_res_dict["table_img"], cv2.COLOR_RGB2BGR)
  133. ocr_result = det_ocr_engine.ocr(bgr_image, rec=False)[0]
  134. # 构造需要 OCR 识别的图片字典,包括cropped_img, dt_box, table_id,并按照语言进行分组
  135. for dt_box in ocr_result:
  136. rec_img_lang_group[_lang].append(
  137. {
  138. "cropped_img": get_rotate_crop_image(
  139. bgr_image, np.asarray(dt_box, dtype=np.float32)
  140. ),
  141. "dt_box": np.asarray(dt_box, dtype=np.float32),
  142. "table_id": index,
  143. }
  144. )
  145. # OCR rec,按照语言分批处理
  146. for _lang, rec_img_list in rec_img_lang_group.items():
  147. ocr_engine = atom_model_manager.get_atom_model(
  148. atom_model_name=AtomicModel.OCR,
  149. det_db_box_thresh=0.5,
  150. det_db_unclip_ratio=1.6,
  151. lang=_lang,
  152. enable_merge_det_boxes=False,
  153. )
  154. cropped_img_list = [item["cropped_img"] for item in rec_img_list]
  155. ocr_res_list = ocr_engine.ocr(cropped_img_list, det=False, tqdm_enable=True, tqdm_desc=f"Table-ocr rec {_lang}")[0]
  156. # 按照 table_id 将识别结果进行回填
  157. for img_dict, ocr_res in zip(rec_img_list, ocr_res_list):
  158. if table_res_list_all_page[img_dict["table_id"]].get("ocr_result"):
  159. table_res_list_all_page[img_dict["table_id"]]["ocr_result"].append(
  160. [img_dict["dt_box"], html.escape(ocr_res[0]), ocr_res[1]]
  161. )
  162. else:
  163. table_res_list_all_page[img_dict["table_id"]]["ocr_result"] = [
  164. [img_dict["dt_box"], html.escape(ocr_res[0]), ocr_res[1]]
  165. ]
  166. clean_vram(self.model.device, vram_threshold=8)
  167. # 先对所有表格使用无线表格模型,然后对分类为有线的表格使用有线表格模型
  168. wireless_table_model = atom_model_manager.get_atom_model(
  169. atom_model_name=AtomicModel.WirelessTable,
  170. )
  171. wireless_table_model.batch_predict(table_res_list_all_page)
  172. # 单独拿出有线表格进行预测
  173. wired_table_res_list = []
  174. for table_res_dict in table_res_list_all_page:
  175. # logger.debug(f"Table classification result: {table_res_dict["table_res"]["cls_label"]} with confidence {table_res_dict["table_res"]["cls_score"]}")
  176. if (
  177. (table_res_dict["table_res"]["cls_label"] == AtomicModel.WirelessTable and table_res_dict["table_res"]["cls_score"] < 0.9)
  178. or table_res_dict["table_res"]["cls_label"] == AtomicModel.WiredTable
  179. ):
  180. wired_table_res_list.append(table_res_dict)
  181. del table_res_dict["table_res"]["cls_label"]
  182. del table_res_dict["table_res"]["cls_score"]
  183. if wired_table_res_list:
  184. for table_res_dict in tqdm(
  185. wired_table_res_list, desc="Table-wired Predict"
  186. ):
  187. if not table_res_dict.get("ocr_result", None):
  188. continue
  189. wired_table_model = atom_model_manager.get_atom_model(
  190. atom_model_name=AtomicModel.WiredTable,
  191. lang=table_res_dict["lang"],
  192. )
  193. table_res_dict["table_res"]["html"] = wired_table_model.predict(
  194. table_res_dict["wired_table_img"],
  195. table_res_dict["ocr_result"],
  196. table_res_dict["table_res"].get("html", None)
  197. )
  198. # 表格格式清理
  199. for table_res_dict in table_res_list_all_page:
  200. html_code = table_res_dict["table_res"].get("html", "") or ""
  201. # 检查html_code是否包含'<table>'和'</table>'
  202. if "<table>" in html_code and "</table>" in html_code:
  203. # 选用<table>到</table>的内容,放入table_res_dict['table_res']['html']
  204. start_index = html_code.find("<table>")
  205. end_index = html_code.rfind("</table>") + len("</table>")
  206. table_res_dict["table_res"]["html"] = html_code[start_index:end_index]
  207. # OCR det
  208. if self.enable_ocr_det_batch:
  209. # 批处理模式 - 按语言和分辨率分组
  210. # 收集所有需要OCR检测的裁剪图像
  211. all_cropped_images_info = []
  212. for ocr_res_list_dict in ocr_res_list_all_page:
  213. _lang = ocr_res_list_dict['lang']
  214. for res in ocr_res_list_dict['ocr_res_list']:
  215. new_image, useful_list = crop_img(
  216. res, ocr_res_list_dict['np_img'], crop_paste_x=50, crop_paste_y=50
  217. )
  218. adjusted_mfdetrec_res = get_adjusted_mfdetrec_res(
  219. ocr_res_list_dict['single_page_mfdetrec_res'], useful_list
  220. )
  221. # BGR转换
  222. bgr_image = cv2.cvtColor(new_image, cv2.COLOR_RGB2BGR)
  223. all_cropped_images_info.append((
  224. bgr_image, useful_list, ocr_res_list_dict, res, adjusted_mfdetrec_res, _lang
  225. ))
  226. # 按语言分组
  227. lang_groups = defaultdict(list)
  228. for crop_info in all_cropped_images_info:
  229. lang = crop_info[5]
  230. lang_groups[lang].append(crop_info)
  231. # 对每种语言按分辨率分组并批处理
  232. for lang, lang_crop_list in lang_groups.items():
  233. if not lang_crop_list:
  234. continue
  235. # logger.info(f"Processing OCR detection for language {lang} with {len(lang_crop_list)} images")
  236. # 获取OCR模型
  237. ocr_model = atom_model_manager.get_atom_model(
  238. atom_model_name=AtomicModel.OCR,
  239. det_db_box_thresh=0.3,
  240. lang=lang
  241. )
  242. # 按分辨率分组并同时完成padding
  243. # RESOLUTION_GROUP_STRIDE = 32
  244. RESOLUTION_GROUP_STRIDE = 64 # 定义分辨率分组的步进值
  245. resolution_groups = defaultdict(list)
  246. for crop_info in lang_crop_list:
  247. cropped_img = crop_info[0]
  248. h, w = cropped_img.shape[:2]
  249. # 使用更大的分组容差,减少分组数量
  250. # 将尺寸标准化到32的倍数
  251. normalized_h = ((h + RESOLUTION_GROUP_STRIDE) // RESOLUTION_GROUP_STRIDE) * RESOLUTION_GROUP_STRIDE # 向上取整到32的倍数
  252. normalized_w = ((w + RESOLUTION_GROUP_STRIDE) // RESOLUTION_GROUP_STRIDE) * RESOLUTION_GROUP_STRIDE
  253. group_key = (normalized_h, normalized_w)
  254. resolution_groups[group_key].append(crop_info)
  255. # 对每个分辨率组进行批处理
  256. for group_key, group_crops in tqdm(resolution_groups.items(), desc=f"OCR-det {lang}"):
  257. # 计算目标尺寸(组内最大尺寸,向上取整到32的倍数)
  258. max_h = max(crop_info[0].shape[0] for crop_info in group_crops)
  259. max_w = max(crop_info[0].shape[1] for crop_info in group_crops)
  260. target_h = ((max_h + RESOLUTION_GROUP_STRIDE - 1) // RESOLUTION_GROUP_STRIDE) * RESOLUTION_GROUP_STRIDE
  261. target_w = ((max_w + RESOLUTION_GROUP_STRIDE - 1) // RESOLUTION_GROUP_STRIDE) * RESOLUTION_GROUP_STRIDE
  262. # 对所有图像进行padding到统一尺寸
  263. batch_images = []
  264. for crop_info in group_crops:
  265. img = crop_info[0]
  266. h, w = img.shape[:2]
  267. # 创建目标尺寸的白色背景
  268. padded_img = np.ones((target_h, target_w, 3), dtype=np.uint8) * 255
  269. # 将原图像粘贴到左上角
  270. padded_img[:h, :w] = img
  271. batch_images.append(padded_img)
  272. # 批处理检测
  273. det_batch_size = min(len(batch_images), self.batch_ratio * OCR_DET_BASE_BATCH_SIZE) # 增加批处理大小
  274. # logger.debug(f"OCR-det batch: {det_batch_size} images, target size: {target_h}x{target_w}")
  275. batch_results = ocr_model.text_detector.batch_predict(batch_images, det_batch_size)
  276. # 处理批处理结果
  277. for i, (crop_info, (dt_boxes, elapse)) in enumerate(zip(group_crops, batch_results)):
  278. bgr_image, useful_list, ocr_res_list_dict, res, adjusted_mfdetrec_res, _lang = crop_info
  279. if dt_boxes is not None and len(dt_boxes) > 0:
  280. # 直接应用原始OCR流程中的关键处理步骤
  281. # 1. 排序检测框
  282. if len(dt_boxes) > 0:
  283. dt_boxes_sorted = sorted_boxes(dt_boxes)
  284. else:
  285. dt_boxes_sorted = []
  286. # 2. 合并相邻检测框
  287. if dt_boxes_sorted:
  288. dt_boxes_merged = merge_det_boxes(dt_boxes_sorted)
  289. else:
  290. dt_boxes_merged = []
  291. # 3. 根据公式位置更新检测框(关键步骤!)
  292. if dt_boxes_merged and adjusted_mfdetrec_res:
  293. dt_boxes_final = update_det_boxes(dt_boxes_merged, adjusted_mfdetrec_res)
  294. else:
  295. dt_boxes_final = dt_boxes_merged
  296. # 构造OCR结果格式
  297. ocr_res = [box.tolist() if hasattr(box, 'tolist') else box for box in dt_boxes_final]
  298. if ocr_res:
  299. ocr_result_list = get_ocr_result_list(
  300. ocr_res, useful_list, ocr_res_list_dict['ocr_enable'], bgr_image, _lang
  301. )
  302. ocr_res_list_dict['layout_res'].extend(ocr_result_list)
  303. else:
  304. # 原始单张处理模式
  305. for ocr_res_list_dict in tqdm(ocr_res_list_all_page, desc="OCR-det Predict"):
  306. # Process each area that requires OCR processing
  307. _lang = ocr_res_list_dict['lang']
  308. # Get OCR results for this language's images
  309. ocr_model = atom_model_manager.get_atom_model(
  310. atom_model_name=AtomicModel.OCR,
  311. ocr_show_log=False,
  312. det_db_box_thresh=0.3,
  313. lang=_lang
  314. )
  315. for res in ocr_res_list_dict['ocr_res_list']:
  316. new_image, useful_list = crop_img(
  317. res, ocr_res_list_dict['np_img'], crop_paste_x=50, crop_paste_y=50
  318. )
  319. adjusted_mfdetrec_res = get_adjusted_mfdetrec_res(
  320. ocr_res_list_dict['single_page_mfdetrec_res'], useful_list
  321. )
  322. # OCR-det
  323. bgr_image = cv2.cvtColor(new_image, cv2.COLOR_RGB2BGR)
  324. ocr_res = ocr_model.ocr(
  325. bgr_image, mfd_res=adjusted_mfdetrec_res, rec=False
  326. )[0]
  327. # Integration results
  328. if ocr_res:
  329. ocr_result_list = get_ocr_result_list(
  330. ocr_res, useful_list, ocr_res_list_dict['ocr_enable'],bgr_image, _lang
  331. )
  332. ocr_res_list_dict['layout_res'].extend(ocr_result_list)
  333. # OCR rec
  334. # Create dictionaries to store items by language
  335. need_ocr_lists_by_lang = {} # Dict of lists for each language
  336. img_crop_lists_by_lang = {} # Dict of lists for each language
  337. for layout_res in images_layout_res:
  338. for layout_res_item in layout_res:
  339. if layout_res_item['category_id'] in [15]:
  340. if 'np_img' in layout_res_item and 'lang' in layout_res_item:
  341. lang = layout_res_item['lang']
  342. # Initialize lists for this language if not exist
  343. if lang not in need_ocr_lists_by_lang:
  344. need_ocr_lists_by_lang[lang] = []
  345. img_crop_lists_by_lang[lang] = []
  346. # Add to the appropriate language-specific lists
  347. need_ocr_lists_by_lang[lang].append(layout_res_item)
  348. img_crop_lists_by_lang[lang].append(layout_res_item['np_img'])
  349. # Remove the fields after adding to lists
  350. layout_res_item.pop('np_img')
  351. layout_res_item.pop('lang')
  352. if len(img_crop_lists_by_lang) > 0:
  353. # Process OCR by language
  354. total_processed = 0
  355. # Process each language separately
  356. for lang, img_crop_list in img_crop_lists_by_lang.items():
  357. if len(img_crop_list) > 0:
  358. # Get OCR results for this language's images
  359. ocr_model = atom_model_manager.get_atom_model(
  360. atom_model_name=AtomicModel.OCR,
  361. det_db_box_thresh=0.3,
  362. lang=lang
  363. )
  364. ocr_res_list = ocr_model.ocr(img_crop_list, det=False, tqdm_enable=True)[0]
  365. # Verify we have matching counts
  366. assert len(ocr_res_list) == len(
  367. need_ocr_lists_by_lang[lang]), f'ocr_res_list: {len(ocr_res_list)}, need_ocr_list: {len(need_ocr_lists_by_lang[lang])} for lang: {lang}'
  368. # Process OCR results for this language
  369. for index, layout_res_item in enumerate(need_ocr_lists_by_lang[lang]):
  370. ocr_text, ocr_score = ocr_res_list[index]
  371. layout_res_item['text'] = ocr_text
  372. layout_res_item['score'] = float(f"{ocr_score:.3f}")
  373. if ocr_score < OcrConfidence.min_confidence:
  374. layout_res_item['category_id'] = 16
  375. else:
  376. layout_res_bbox = [layout_res_item['poly'][0], layout_res_item['poly'][1],
  377. layout_res_item['poly'][4], layout_res_item['poly'][5]]
  378. layout_res_width = layout_res_bbox[2] - layout_res_bbox[0]
  379. layout_res_height = layout_res_bbox[3] - layout_res_bbox[1]
  380. if ocr_text in ['(204号', '(20', '(2', '(2号', '(20号', '号', '(204'] and ocr_score < 0.8 and layout_res_width < layout_res_height:
  381. layout_res_item['category_id'] = 16
  382. total_processed += len(img_crop_list)
  383. return images_layout_res